Alessio Ferrari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5376480/publications.pdf

Version: 2024-02-01

279798 289244 1,727 61 23 40 citations h-index g-index papers 65 65 65 1327 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Life cycle environmental assessment of retaining walls in unsaturated soils. Geomechanics for Energy and the Environment, 2022, 30, 100241.	2.5	4
2	Volume change response and fabric evolution of granular MX80 bentonite along different hydro-mechanical stress paths. Acta Geotechnica, 2022, 17, 3719-3730.	5.7	10
3	Role of Stress History on the Swelling–Shrinkage Behavior of Compacted Scaly Clay. International Journal of Geomechanics, 2022, 22, .	2.7	1
4	Benchmark study of undrained triaxial testing of Opalinus Clay shale: Results and implications for robust testing. Geomechanics for Energy and the Environment, 2021, 25, 100210.	2.5	22
5	Experimental assessment of the hydro-mechanical behaviour of a shale caprock during CO2 injection. International Journal of Greenhouse Gas Control, 2021, 106, 103225.	4.6	18
6	Effect of the mineralogical composition on the elastoplastic hydromechanical response of Opalinus Clay shale. International Journal of Rock Mechanics and Minings Sciences, 2021, 143, 104747.	5.8	7
7	Coupled hydro-mechanical analysis of compacted bentonite behaviour during hydration. Computers and Geotechnics, 2021, 140, 104447.	4.7	12
8	Generalized effective stress concept for saturated active clays. Canadian Geotechnical Journal, 2021, 58, 1627-1639.	2.8	10
9	Microstructure and shear strength evolution of a lime-treated clay for use in road construction. International Journal of Pavement Engineering, 2020, 21, 1147-1158.	4.4	31
10	Yielding of a quartz sand from saturated to dry state. E3S Web of Conferences, 2020, 195, 03038.	0.5	0
11	Water retention behaviour of compacted and reconstituted scaly clays. E3S Web of Conferences, 2020, 195, 03026.	0.5	1
12	Displacement Evolution of a Large Landslide in a Highly Fissured Clay. Lecture Notes in Civil Engineering, 2020, , 195-204.	0.4	3
13	Numerical investigation on water exchange of shale samples. E3S Web of Conferences, 2020, 195, 02025.	0.5	1
14	Developing a high capacity axis translation apparatus for gas shale testing. E3S Web of Conferences, 2020, 195, 03020.	0.5	1
15	A coupled hydro – mechanical approach for modelling the volume change behaviour of compacted bentonite. E3S Web of Conferences, 2020, 195, 04006.	0.5	1
16	An extended generalized effective stress for active clays. E3S Web of Conferences, 2020, 195, 02004.	0.5	0
17	Effective stress concept for mechanical modeling of clays under different environmental conditions. E3S Web of Conferences, 2020, 205, 13015.	0.5	0
18	Swelling and shrinkage of gas shales due to suction variations. E3S Web of Conferences, 2020, 205, 13004.	0.5	0

#	Article	lF	CITATIONS
19	The impact of the compaction and mineralogical composition on the retention behaviour of Opalinus Clay. E3S Web of Conferences, 2020, 205, 13009.	0.5	O
20	Anisotropic Behaviour of Shallow Opalinus Clay. Springer Series in Geomechanics and Geoengineering, 2019, , 442-448.	0.1	3
21	Gas Shale Water Imbibition Tests with Controlled Suction Technique. Springer Series in Geomechanics and Geoengineering, 2019, , 250-257.	0.1	0
22	An experimental investigation on the water retention behaviour of a silty soil for the computation of the lateral earth thrust on a retaining wall. E3S Web of Conferences, 2019, 92, 07011.	0.5	1
23	Hydro-mechanical behaviour of shallow Opalinus Clay shale. Engineering Geology, 2019, 251, 214-227.	6.3	41
24	Volume change characteristics of fine-grained soils due to sequential thermo-mechanical stresses. Engineering Geology, 2019, 253, 47-54.	6.3	13
25	The Permeable Concrete: A Low Energy Consumption Solution for Deep Draining Trenches. Springer Series in Geomechanics and Geoengineering, 2019, , 323-330.	0.1	0
26	On the reactivation of a large landslide induced by rainfall in highly fissured clays. Engineering Geology, 2018, 235, 20-38.	6.3	52
27	Anisotropic Behaviour of Opalinus Clay Through Consolidated and Drained Triaxial Testing in Saturated Conditions. Rock Mechanics and Rock Engineering, 2018, 51, 1305-1319.	5.4	52
28	Nonlinear Elastic Response of Partially Saturated Gas Shales in Uniaxial Compression. Rock Mechanics and Rock Engineering, 2018, 51, 1967-1978.	5.4	14
29	The impact of the volumetric swelling behavior on the water uptake of gas shale. Journal of Natural Gas Science and Engineering, 2018, 49, 132-144.	4.4	26
30	On the hydro-mechanical behaviour of a lime-treated embankment during wetting and drying cycles. Geomechanics for Energy and the Environment, 2018, 14, 48-60.	2.5	25
31	Gas shales testing in controlled partially saturated conditions. International Journal of Rock Mechanics and Minings Sciences, 2018, 107, 110-119.	5.8	11
32	The Role of Anisotropy on the Volumetric Behaviour of Opalinus Clay upon Suction Change. Springer Series in Geomechanics and Geoengineering, 2017, , 315-321.	0.1	3
33	One Dimensional Consolidation of Opalinus Clay from Shallow Depth. Springer Series in Geomechanics and Geoengineering, 2017, , 338-344.	0.1	1
34	1D Compression Behaviour of Opalinus Clay. Springer Series in Geomechanics and Geoengineering, 2017, , 322-329.	0.1	0
35	Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40, 1358-1380.	3.3	101
36	On the hydro-mechanical behaviour of remoulded and natural Opalinus Clay shale. Engineering Geology, 2016, 208, 128-135.	6.3	48

#	Article	IF	CITATIONS
37	Thermo-mechanical volume change behaviour of Opalinus Clay. International Journal of Rock Mechanics and Minings Sciences, 2016, 90, 15-25.	5.8	51
38	One-dimensional compression and consolidation of shales. International Journal of Rock Mechanics and Minings Sciences, 2016, 88, 286-300.	5.8	42
39	Fabric evolution and the related swelling behaviour of a sand/bentonite mixture upon hydro-chemo-mechanical loadings. Geotechnique, 2016, 66, 41-57.	4.0	50
40	Hydro-mechanical analysis of volcanic ash slopes during rainfall. Geotechnique, 2016, 66, 220-231.	4.0	17
41	Anisotropic volumetric behaviour of Opalinus clay shale upon suction variation. Geotechnique Letters, 2016, 6, 144-148.	1.2	44
42	Nonstationary flow surface theory for modeling the viscoplastic behaviors of soils. Computers and Geotechnics, 2016, 76, 105-119.	4.7	32
43	Experimental investigations of the soil–concrete interface: physical mechanisms, cyclic mobilization, and behaviour at different temperatures. Canadian Geotechnical Journal, 2016, 53, 659-672.	2.8	143
44	Shear strength of a compacted scaly clay in variable saturation conditions. Acta Geotechnica, 2016, 11, 37-50.	5.7	31
45	Monitoring and prediction in early warning systems for rapid mass movements. Natural Hazards and Earth System Sciences, 2015, 15, 905-917.	3.6	107
46	One-Dimensional Transient Analysis of Rainfall Infiltration in Unsaturated Volcanic Ash. Springer Series in Geomechanics and Geoengineering, 2015, , 107-118.	0.1	0
47	Water retention behaviour and microstructural evolution of MX-80 bentonite during wetting and drying cycles. Geotechnique, 2014, 64, 721-734.	4.0	141
48	Characterization of gas flow through low-permeability claystone: laboratory experiments and two-phase flow analyses. Geological Society Special Publication, 2014, 400, 531-543.	1.3	17
49	The Pore Structure of Compacted and Partly Saturated MX-80 Bentonite at Different Dry Densities. Clays and Clay Minerals, 2014, 62, 174-187.	1.3	24
50	Shot-clay MX-80 bentonite: An assessment of the hydro-mechanical behaviour. Engineering Geology, 2014, 173, 10-18.	6.3	15
51	Experimental analysis of the water retention behaviour of shales. International Journal of Rock Mechanics and Minings Sciences, 2014, 72, 61-70.	5.8	92
52	Early warning thresholds for partially saturated slopes in volcanic ashes. Computers and Geotechnics, 2013, 49, 79-89.	4.7	41
53	Investigation into water retention behaviour of deformable soils. Canadian Geotechnical Journal, 2013, 50, 200-208.	2.8	112
54	Hydromechanical behaviour of a volcanic ash. Geotechnique, 2013, 63, 1433-1446.	4.0	23

ALESSIO FERRARI

#	Article	IF	CITATIONS
55	An experimental and constitutive investigation on the chemo-mechanical behaviour of a clay. Geotechnique, 2013, 63, 244-255.	4.0	59
56	Advances in the Testing of the Hydro-mechanical Behaviour of Shales. Springer Series in Geomechanics and Geoengineering, 2013, , 57-68.	0.1	23
57	Effects of the foot evolution on the behaviour of slow-moving landslides. Engineering Geology, 2011, 117, 217-228.	6.3	30
58	Volume change behaviour of a compacted scaly clay during cyclic suction changes. Canadian Geotechnical Journal, 2010, 47, 688-703.	2.8	58
59	A Comparative Study of Soil Suction Measurement Using Two Different High-Range Psychrometers. , 2007, , 79-93.		40
60	Mechanical Behaviour of Compacted Scaly Clay During Cyclic Controlled-Suction Testing. , 2007, , 345-354.		8
61	Discussion on "Experimental Deformation of Opalinus Clay at Elevated Temperature and Pressure Conditions: Mechanical Properties and the Influence of Rock Fabric―of Schuster, V., Rybacki, E., Bonnelye, A., Herrmann, J., Schleicher, A.M., Dresen, G Rock Mechanics and Rock Engineering, O, , 1.	5.4	1