
James W Head

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5375622/publications.pdf Version: 2024-02-01

LAMES W/ HEAD

#	Article	IF	CITATIONS
1	Young lunar mare basalts in the Chang'e-5 sample return region, northern Oceanus Procellarum. Earth and Planetary Science Letters, 2021, 555, 116702.	4.4	88
2	The Long Sinuous Rille System in Northern Oceanus Procellarum and Its Relation to the Chang'eâ€5 Returned Samples. Geophysical Research Letters, 2021, 48, e2021GL092663.	4.0	22
3	Pre-Orientale Southwest Peak-Ring Basin: Gravity Structure, Geologic Characteristics, and Influence on Orientale Basin Ring Formation and Ejecta Emplacement. Remote Sensing, 2021, 13, 2635.	4.0	1
4	Mare Domes in Mare Tranquillitatis: Identification, Characterization, and Implications for Their Origin. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006888.	3.6	6
5	Magmatic intrusion-related processes in the upper lunar crust: The role of country rock porosity/permeability in magmatic percolation and thermal annealing, and implications for gravity signatures. Planetary and Space Science, 2020, 180, 104765.	1.7	6
6	Quantitative Characterization of Impact Crater Materials on the Moon: Changes in Topographic Roughness and Thermophysical Properties With Age. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006091.	3.6	9
7	GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into subsurface impact and magmatic structures on the Moon. Icarus, 2019, 331, 192-208.	2.5	20
8	The Apollo peak-ring impact basin: Insights into the structure and evolution of the South Pole–Aitken basin. Icarus, 2018, 306, 139-149.	2.5	14
9	Ring faults and ring dikes around the Orientale basin on the Moon. Icarus, 2018, 310, 1-20.	2.5	31
10	Lunar Orientale Impact Basin Secondary Craters: Spatial Distribution, Sizeâ€Frequency Distribution, and Estimation of Fragment Size. Journal of Geophysical Research E: Planets, 2018, 123, 1344-1367.	3.6	18
11	Reexamination of Early Lunar Chronology With GRAIL Data: Terranes, Basins, and Impact Fluxes. Journal of Geophysical Research E: Planets, 2018, 123, 1596-1617.	3.6	25
12	GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation. Icarus, 2017, 292, 54-73.	2.5	19
13	Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission. Science, 2016, 354, 438-441.	12.6	38
14	Gravitational search for cryptovolcanism on the Moon: Evidence for large volumes of early igneous activity. Icarus, 2016, 273, 284-295.	2.5	27
15	The formation of peak-ring basins: Working hypotheses and path forward in using observations to constrain models of impact-basin formation. Icarus, 2016, 273, 146-163.	2.5	42
16	Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements. Science Advances, 2015, 1, e1500852.	10.3	173
17	Detecting volcanic resurfacing of heavily cratered terrain: Flooding simulations on the Moon using Lunar Orbiter Laser Altimeter (LOLA) data. Planetary and Space Science, 2013, 85, 24-37.	1.7	23
18	Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry. Science, 2013, 339, 675-678.	12.6	177

James W Head

#	Article	IF	CITATIONS
19	Geology and petrology of enormous volumes of impact melt on the Moon: A case study of the Orientale basin impact melt sea. Icarus, 2013, 223, 749-765.	2.5	114
20	The transition from complex craters to multiâ€ring basins on the Moon: Quantitative geometric properties from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter (LOLA) data. Journal of Geophysical Research, 2012, 117, .	3.3	40
21	Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data. Journal of Geophysical Research, 2012, 117, .	3.3	68
22	The transition from complex crater to peak-ring basin on the Moon: New observations from the Lunar Orbiter Laser Altimeter (LOLA) instrument. Icarus, 2011, 214, 377-393.	2.5	74
23	Global Distribution of Large Lunar Craters: Implications for Resurfacing and Impactor Populations. Science, 2010, 329, 1504-1507.	12.6	210
24	Increasing Antiviral Activity of Surfactant Protein D Trimers by Introducing Residues from Bovine Serum Collectins: Dissociation of Mannanâ€Binding and Antiviral Activity. Scandinavian Journal of Immunology, 2010, 72, 22-30.	2.7	16
25	Monoclonal antibody-assisted structure-function analysis of the carbohydrate recognition domain of surfactant protein D. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L384-L392.	2.9	8
26	Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophysical Research Letters, 2010, 37, .	4.0	356
27	Recognition of Mannosylated Ligands and Influenza A Virus by Human Surfactant Protein D: Contributions of an Extended Site and Residue 343 [,] . Biochemistry, 2009, 48, 3335-3345.	2.5	56
28	Interaction of Recombinant Surfactant Protein D with Lipopolysaccharide: Conformation and Orientation of Bound Protein by IRRAS and Simulations. Biochemistry, 2008, 47, 8103-8113.	2.5	24
29	Recognition of Heptoses and the Inner Core of Bacterial Lipopolysaccharides by Surfactant Protein D. Biochemistry, 2008, 47, 710-720.	2.5	53
30	Critical Role of Arg/Lys343 in the Species-Dependent Recognition of Phosphatidylinositol by Pulmonary Surfactant Protein D,. Biochemistry, 2007, 46, 5160-5169.	2.5	28
31	The cyst wall of Entamoeba invadens contains chitosan (deacetylated chitin)â~†. Molecular and Biochemical Parasitology, 2006, 148, 86-92.	1.1	44
32	Species Differences in the Carbohydrate Binding Preferences of Surfactant Protein D. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 84-94.	2.9	57
33	Contributions of Phenylalanine 335 to Ligand Recognition by Human Surfactant Protein D. Journal of Biological Chemistry, 2006, 281, 18008-18014.	3.4	30
34	The deep structure of lunar basins: Implications for basin formation and modification. Journal of Geophysical Research, 1985, 90, 3049-3064.	3.3	62
35	Stratigraphy and structural evolution of Southern Mare Serenitatis: A reinterpretation based on Apollo Lunar Sounder Experiment data. Journal of Geophysical Research, 1982, 87, 10983-10998.	3.3	55
36	Lava flooding of ancient planetary crusts: Geometry, thickness, and volumes of flooded lunar impact basins. The Moon and the Planets, 1982, 26, 61-88.	0.5	68

#	Article	IF	CITATIONS
37	Processes of lunar crater degradation: Changes in style with geologic time. The Moon, 1975, 12, 299-329.	0.4	82
38	Troponin C in brain. Nature, 1975, 258, 260-262.	27.8	42
39	Orientale multi-ringed basin interior and implications for the petrogenesis of lunar highland samples. The Moon, 1974, 11, 327-356.	0.4	148