Moshe E Levi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5375417/publications.pdf

Version: 2024-02-01

157	12,425	25034	107
papers	citations	h-index	g-index
163 all docs	163 docs citations	163 times ranked	14889 citing authors

#	Article	IF	CITATIONS
1	Triglycerides and Cardiovascular Disease. Circulation, 2011, 123, 2292-2333.	1.6	1,511
2	Mouse Models of Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2009, 20, 2503-2512.	6.1	582
3	Renal Control of Calcium, Phosphate, and Magnesium Homeostasis. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1257-1272.	4.5	523
4	Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nature Reviews Nephrology, 2016, 12, 453-471.	9.6	461
5	Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. Journal of Lipid Research, 2014, 55, 561-572.	4.2	405
6	Diet-induced Obesity in C57BL/6J Mice Causes Increased Renal Lipid Accumulation and Glomerulosclerosis via a Sterol Regulatory Element-binding Protein-1c-dependent Pathway. Journal of Biological Chemistry, 2005, 280, 32317-32325.	3.4	307
7	Role of Sterol Regulatory Element-binding Protein 1 in Regulation of Renal Lipid Metabolism and Glomerulosclerosis in Diabetes Mellitus. Journal of Biological Chemistry, 2002, 277, 18919-18927.	3.4	282
8	Advanced glycation end products: A nephrologist's perspective. American Journal of Kidney Diseases, 2000, 35, 365-380.	1.9	275
9	Regulation of Renal Lipid Metabolism, Lipid Accumulation, and Glomerulosclerosis in FVB <i>db/db</i> Mice With Type 2 Diabetes. Diabetes, 2005, 54, 2328-2335.	0.6	262
10	Regulation of Renal Fatty Acid and Cholesterol Metabolism, Inflammation, and Fibrosis in Akita and OVE26 Mice With Type 1 Diabetes. Diabetes, 2006, 55, 2502-2509.	0.6	255
11	Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in <i>db/db</i> Mice. Diabetes, 2018, 67, 1867-1879.	0.6	243
12	SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy. Journal of Biological Chemistry, 2017, 292, 5335-5348.	3.4	231
13	Farnesoid X Receptor Modulates Renal Lipid Metabolism, Fibrosis, and Diabetic Nephropathy. Diabetes, 2007, 56, 2485-2493.	0.6	206
14	Bile Acid Receptor Activation Modulates Hepatic Monocyte Activity and Improves Nonalcoholic Fatty Liver Disease. Journal of Biological Chemistry, 2013, 288, 11761-11770.	3.4	184
15	Spatial-Temporal Studies of Membrane Dynamics: Scanning Fluorescence Correlation Spectroscopy (SFCS). Biophysical Journal, 2004, 87, 1260-1267.	0.5	178
16	Skeletal Muscle Deoxygenation After the Onset of Moderate Exercise Suggests Slowed Microvascular Blood Flow Kinetics in Type 2 Diabetes. Diabetes Care, 2007, 30, 2880-2885.	8.6	172
17	Functional Characterization of the Semisynthetic Bile Acid Derivative INT-767, a Dual Farnesoid X Receptor and TGR5 Agonist. Molecular Pharmacology, 2010, 78, 617-630.	2.3	164
18	The Na ⁺ -P _i cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary P _i . American Journal of Physiology - Renal Physiology, 2009, 296, F691-F699.	2.7	149

#	Article	IF	Citations
19	Diabetic Nephropathy Is Accelerated by Farnesoid X Receptor Deficiency and Inhibited by Farnesoid X Receptor Activation in a Type 1 Diabetes Model. Diabetes, 2010, 59, 2916-2927.	0.6	149
20	Altered renal tubular expression of the complement inhibitor Crry permits complement activation after ischemia/reperfusion. Journal of Clinical Investigation, 2006, 116, 357-368.	8.2	149
21	The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. American Journal of Physiology - Renal Physiology, 2009, 297, F1587-F1596.	2.7	147
22	Characterization of Cholesterol Crystals in Atherosclerotic Plaques Using Stimulated Raman Scattering and Second-Harmonic Generation Microscopy. Biophysical Journal, 2012, 102, 1988-1995.	0.5	140
23	G Protein-Coupled Bile Acid Receptor TGR5 Activation Inhibits Kidney Disease in Obesity and Diabetes. Journal of the American Society of Nephrology: JASN, 2016, 27, 1362-1378.	6.1	140
24	Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate. American Journal of Physiology - Renal Physiology, 2009, 297, F1466-F1475.	2.7	137
25	FXR/TGR5 Dual Agonist Prevents Progression of Nephropathy in Diabetes and Obesity. Journal of the American Society of Nephrology: JASN, 2018, 29, 118-137.	6.1	133
26	Synthetic LXR agonist attenuates plaque formation in apoE-/- mice without inducing liver steatosis and hypertriglyceridemia. Journal of Lipid Research, 2009, 50, 312-326.	4.2	121
27	Characterization of Phosphate Transport in Rat Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1030-1036.	2.4	117
28	Hemodynamic changes during hemodialysis: Role of nitric oxide and endothelin. Kidney International, 2002, 61, 697-704.	5.2	113
29	Intestinal Phosphate Transport. Advances in Chronic Kidney Disease, 2011, 18, 85-90.	1.4	112
30	Rapid downregulation of rat renal Na/Pi cotransporter in response to parathyroid hormone involves microtubule rearrangement. Journal of Clinical Investigation, 1999, 104, 483-494.	8.2	109
31	Identification of cholesterol crystals in plaques of atherosclerotic mice using hyperspectral CARS imaging. Journal of Lipid Research, 2011, 52, 2177-2186.	4.2	108
32	Sodium-Dependent Phosphate Cotransporters and Phosphate-Induced Calcification of Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2625-2632.	2.4	107
33	PERKâ€elF2αâ€ATF4â€CHOP Signaling Contributes to TNFαâ€Induced Vascular Calcification. Journal of the American Heart Association, 2013, 2, e000238.	3.7	106
34	Role of altered renal lipid metabolism and the sterol regulatory element binding proteins in the pathogenesis of age-related renal disease. Kidney International, 2005, 68, 2608-2620.	5.2	100
35	Mechanisms of phosphate transport. Nature Reviews Nephrology, 2019, 15, 482-500.	9.6	99
36	Dual Activation of the Bile Acid Nuclear Receptor FXR and G-Protein-Coupled Receptor TGR5 Protects Mice against Atherosclerosis. PLoS ONE, 2014, 9, e108270.	2.5	98

#	Article	IF	CITATIONS
37	Synthetic Farnesoid X Receptor Agonists Induce High-Density Lipoprotein-Mediated Transhepatic Cholesterol Efflux in Mice and Monkeys and Prevent Atherosclerosis in Cholesteryl Ester Transfer Protein Transgenic Low-Density Lipoprotein Receptor (â^'/â^') Mice. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 556-567.	2.5	90
38	Acarbose improves health and lifespan in aging HET3 mice. Aging Cell, 2019, 18, e12898.	6.7	90
39	Role of Thyroid Hormone in Regulation of Renal Phosphate Transport in Young and Aged Rats ¹ . Endocrinology, 1999, 140, 1544-1551.	2.8	87
40	Effect of high protein diet on stone-forming propensity and bone loss in rats. Kidney International, 2003, 64, 2142-2149.	5. 2	87
41	Farnesoid X Receptor Activation Prevents the Development of Vascular Calcification in ApoE ^{â^'/â^'} Mice With Chronic Kidney Disease. Circulation Research, 2010, 106, 1807-1817.	4.5	85
42	Post-transplant hypophosphatemia. Kidney International, 2001, 59, 2377-2387.	5. 2	82
43	Regulation of renal phosphate transport by acute and chronic metabolic acidosis in the rat. Kidney International, 1998, 53, 1288-1298.	5 . 2	81
44	Vitamin D receptor agonist doxercalciferol modulates dietary fat-induced renal disease and renal lipid metabolism. American Journal of Physiology - Renal Physiology, 2011, 300, F801-F810.	2.7	75
45	Evidence for a PTH-independent humoral mechanism in post-transplant hypophosphatemia and phosphaturia. Kidney International, 2001, 60, 1182-1196.	5.2	74
46	Modulation of carbohydrate response element-binding protein gene expression in 3T3-L1 adipocytes and rat adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E424-E430.	3. 5	74
47	Calorie Restriction Modulates Renal Expression of Sterol Regulatory Element Binding Proteins, Lipid Accumulation, and Age-Related Renal Disease. Journal of the American Society of Nephrology: JASN, 2005, 16, 2385-2394.	6.1	72
48	Endocytosis of Albumin by Podocytes Elicits an Inflammatory Response and Induces Apoptotic Cell Death. PLoS ONE, 2013, 8, e54817.	2.5	70
49	Spaceflight Activates Lipotoxic Pathways in Mouse Liver. PLoS ONE, 2016, 11, e0152877.	2.5	69
50	Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice. Journal of Lipid Research, 2010, 51, 1729-1737.	4.2	68
51	Kidney agingâ€"inevitable or preventable?. Nature Reviews Nephrology, 2011, 7, 706-717.	9.6	67
52	Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry. Journal of Vascular Surgery, 2003, 37, 1017-1026.	1.1	66
53	Vascular smooth muscle cell calcification and SLC20 inorganic phosphate transporters: effects of PDGF, TNF-α, and Pi. Pflugers Archiv European Journal of Physiology, 2009, 458, 1151-1161.	2.8	66
54	Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. American Journal of Physiology - Renal Physiology, 2009, 297, F350-F361.	2.7	64

#	Article	IF	CITATIONS
55	The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Renal and Liver Disease in Western Diet Induced Obesity Mice. International Journal of Molecular Sciences, 2018, 19, 137.	4.1	64
56	Renal brush border membrane Na/Pi-cotransport: Molecular aspects in PTH-dependent and dietary regulation. Kidney International, 1996, 49, 1769-1773.	5.2	63
57	Liver X Receptor Modulates Diabetic Retinopathy Outcome in a Mouse Model of Streptozotocin-Induced Diabetes. Diabetes, 2012, 61, 3270-3279.	0.6	62
58	Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney. American Journal of Physiology - Renal Physiology, 2016, 310, F351-F363.	2.7	54
59	Activating transcription factor 4 regulates stearate-induced vascular calcification. Journal of Lipid Research, 2012, 53, 1543-1552.	4.2	51
60	Endoplasmic Reticulum Stress Effector CCAAT/Enhancerâ€binding Protein Homologous Protein (CHOP) Regulates Chronic Kidney Disease–Induced Vascular Calcification. Journal of the American Heart Association, 2014, 3, e000949.	3.7	49
61	Interaction of MAP17 with NHERF3/4 induces translocation of the renal Na/Pi IIa transporter to the trans-Golgi. American Journal of Physiology - Renal Physiology, 2007, 292, F230-F242.	2.7	48
62	The Mechanism of Diabetic Retinopathy Pathogenesis Unifying Key Lipid Regulators, Sirtuin 1 and Liver X Receptor. EBioMedicine, 2017, 22, 181-190.	6.1	48
63	PTH-induced internalization of apical membrane NaPi2a: role of actin and myosin VI. American Journal of Physiology - Cell Physiology, 2009, 297, C1339-C1346.	4.6	47
64	A dual agonist of farnesoid X receptor (FXR) and the G protein–coupled receptor TGR5, INT-767, reverses age-related kidney disease in mice. Journal of Biological Chemistry, 2017, 292, 12018-12024.	3.4	47
65	Bile acid receptors and the kidney. Current Opinion in Nephrology and Hypertension, 2018, 27, 56-62.	2.0	47
66	Myosin VI is required for maintenance of brush border structure, composition, and membrane trafficking functions in the intestinal epithelial cell. Cytoskeleton, 2012, 69, 235-251.	2.0	45
67	Early PQQ supplementation has persistent longâ€term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. FASEB Journal, 2017, 31, 1434-1448.	0.5	45
68	Role of PDZK1 Protein in Apical Membrane Expression of Renal Sodium-coupled Phosphate Transporters. Journal of Biological Chemistry, 2011, 286, 15032-15042.	3.4	44
69	Simultaneous inhibition of FXR and TGR5 exacerbates atherosclerotic formation. Journal of Lipid Research, 2018, 59, 1709-1713.	4.2	44
70	Partitioning of NaPi Cotransporter in Cholesterol-, Sphingomyelin-, and Glycosphingolipid-enriched Membrane Domains Modulates NaPi Protein Diffusion, Clustering, and Activity. Journal of Biological Chemistry, 2004, 279, 49160-49171.	3.4	43
71	Advanced glycation end products and oxidative stress are increased in chronic allograft nephropathy. American Journal of Kidney Diseases, 2004, 43, 154-160.	1.9	43
72	Insulin attenuates vascular smooth muscle calcification but increases vascular smooth muscle cell phosphate transport. Atherosclerosis, 2007, 195, e65-e75.	0.8	43

#	Article	IF	Citations
73	CD73-Dependent Generation of Adenosine and Endothelial Adora2b Signaling Attenuate Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2014, 25, 547-563.	6.1	40
74	NHE3 Regulatory Factor 1 (NHERF1) Modulates Intestinal Sodium-dependent Phosphate Transporter (NaPi-2b) Expression in Apical Microvilli. Journal of Biological Chemistry, 2012, 287, 35047-35056.	3 . 4	39
75	Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+-dependent phosphate cotransporters. Pflugers Archiv European Journal of Physiology, 2011, 461, 77-90.	2.8	38
76	Chronic kidney disease and aging differentially diminish bone material and microarchitecture in C57Bl/6 mice. Bone, 2019, 127, 91-103.	2.9	37
77	Bile acid sequestration reverses liver injury and prevents progression of nonalcoholic steatohepatitis in Western diet–fed mice. Journal of Biological Chemistry, 2020, 295, 4733-4747.	3.4	37
78	Cellular mechanisms of the age-related decrease in renal phosphate reabsorption. Kidney International, 1996, 50, 855-863.	5.2	36
79	Increased Lipogenesis and Stearate Accelerate Vascular Calcification in Calcifying Vascular Cells. Journal of Biological Chemistry, 2011, 286, 23938-23949.	3.4	36
80	Intestinal phosphate absorption is mediated by multiple transport systems in rats. American Journal of Physiology - Renal Physiology, 2017, 312, G355-G366.	3 . 4	36
81	Glycosphingolipids modulate renal phosphate transport in potassium deficiency. Kidney International, 2001, 60, 694-704.	5. 2	35
82	LIPID PHASES IN RENAL BRUSH BORDER MEMBRANES REVEALED BY LAURDAN FLUORESCENCE*. Photochemistry and Photobiology, 1993, 57, 420-425.	2.5	34
83	Urinary matrix metalloproteinase activities: biomarkers for plaque angiogenesis and nephropathy in diabetes. American Journal of Physiology - Renal Physiology, 2011, 301, F1326-F1333.	2.7	34
84	Central control of renal sodium-phosphate (NaPi-2) transporters. American Journal of Physiology - Renal Physiology, 2004, 286, F647-F652.	2.7	33
85	Regulation of renal NaPi-2 expression and tubular phosphate reabsorption by growth hormone in the juvenile rat. American Journal of Physiology - Renal Physiology, 2004, 287, F117-F123.	2.7	33
86	Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone. American Journal of Physiology - Cell Physiology, 2011, 301, C850-C861.	4.6	33
87	Sevelamer Improves Steatohepatitis, Inhibits Liver and Intestinal Farnesoid X Receptor (FXR), and Reverses Innate Immune Dysregulation in a Mouse Model of Non-alcoholic Fatty Liver Disease. Journal of Biological Chemistry, 2016, 291, 23058-23067.	3.4	33
88	Advances in fluorescence microscopy techniques to study kidney function. Nature Reviews Nephrology, 2021, 17, 128-144.	9.6	33
89	Effect of hypokalemia on renal expression of the ammonia transporter family members, Rh B Glycoprotein and Rh C Glycoprotein, in the rat kidney. American Journal of Physiology - Renal Physiology, 2011, 301, F823-F832.	2.7	32
90	Liver X receptors preserve renal glomerular integrity under normoglycaemia and in diabetes in mice. Diabetologia, 2014, 57, 435-446.	6.3	32

#	Article	IF	CITATIONS
91	New aspects of adaptation of rat renal Na-Pi cotransporter to alterations in dietary phosphate. Kidney International, 1996, 49, 1012-1018.	5.2	31
92	Chronic K depletion inhibits renal brush border membrane Na/sulfate cotransport. Kidney International, 1999, 55, 244-251.	5.2	31
93	Nuclear hormone receptors in diabetic nephropathy. Nature Reviews Nephrology, 2010, 6, 342-351.	9.6	31
94	Protective effects of aliskiren and valsartan in mice with diabetic nephropathy. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2014, 15, 384-395.	1.7	31
95	Characterizing the Retinal Phenotype in the High-Fat Diet and Western Diet Mouse Models of Prediabetes. Cells, 2020, 9, 464.	4.1	31
96	Metabolic acidosis regulates rat renal Na-Si cotransport activity. American Journal of Physiology - Cell Physiology, 1999, 276, C1398-C1404.	4.6	30
97	Renal tubular sites of increased phosphate transport and NaPi-2 expression in the juvenile rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R1524-R1533.	1.8	30
98	Acute and chronic changes in cholesterol modulate Na-Pi cotransport activity in OK cells. American Journal of Physiology - Renal Physiology, 2005, 289, F154-F165.	2.7	30
99	Nuclear receptors in renal disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1061-1067.	3.8	30
100	Serelaxin improves cardiac and renal function in DOCA-salt hypertensive rats. Scientific Reports, 2017, 7, 9793.	3.3	29
101	In K562 and HL60 cells membrane ageing during cell growth is associated with changes in cholesterol concentration. Mechanisms of Ageing and Development, 1997, 97, 109-119.	4.6	28
102	Shank2E binds NaPi cotransporter at the apical membrane of proximal tubule cells. American Journal of Physiology - Cell Physiology, 2005, 289, C1042-C1051.	4.6	28
103	Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging Microscopy. Nephron Experimental Nephrology, 2006, 103, e41-e49.	2.2	28
104	Liver X receptor-activating ligands modulate renal and intestinal sodium–phosphate transporters. Kidney International, 2011, 80, 535-544.	5.2	28
105	Nuclear receptors in the kidney during health and disease. Molecular Aspects of Medicine, 2021, 78, 100935.	6.4	28
106	Regulation of rat renal Na/Pi-cotransporter by parathyroid hormone: Immunohistochemistry. Kidney International, 1996, 49, 1010-1011.	5.2	26
107	Renal Phosphate Wasting in the Absence of Adenylyl Cyclase 6. Journal of the American Society of Nephrology: JASN, 2014, 25, 2822-2834.	6.1	24
108	Effect of ischemia reperfusion on sodium-dependent phosphate transport in renal brush border membranes. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1716, 19-28.	2.6	23

#	Article	IF	CITATIONS
109	An in Situ Atlas of Mitochondrial DNA in Mammalian Tissues Reveals High Content in StemÂand Proliferative Compartments. American Journal of Pathology, 2020, 190, 1565-1579.	3.8	21
110	Nanometerâ€scale imaging by the modulation tracking method. Journal of Biophotonics, 2011, 4, 415-424.	2.3	20
111	Sacubitril/valsartan treatment has differential effects in modulating diabetic kidney disease in <i>db/db</i> mice and KKAy mice compared with valsartan treatment. American Journal of Physiology - Renal Physiology, 2021, 320, F1133-F1151.	2.7	20
112	Low-Pi diet increases the abundance of an apical protein in rat proximal-tubular S3 segments. Pflugers Archiv European Journal of Physiology, 1994, 426, 5-11.	2.8	19
113	Nuclear Hormone Receptors as Therapeutic Targets. Contributions To Nephrology, 2011, 170, 209-216.	1.1	19
114	Na ⁺ -independent phosphate transport in Caco2BBE cells. American Journal of Physiology - Cell Physiology, 2014, 307, C1113-C1122.	4.6	19
115	Disorders of Lipid Metabolism and Chronic Kidney Disease in the Elderly. Seminars in Nephrology, 2009, 29, 610-620.	1.6	18
116	Epidermal growth factor inhibits Na-P _i cotransport in weaned and suckling rats. American Journal of Physiology - Renal Physiology, 1999, 276, F72-F78.	2.7	17
117	Role of Bile Acid–Regulated Nuclear Receptor FXR and G Protein–Coupled Receptor TGR5 in Regulation of Cardiorenal Syndrome (Cardiovascular Disease and Chronic Kidney Disease). Hypertension, 2016, 67, 1080-1084.	2.7	17
118	Effect of Glucocorticoids on Neonatal Rabbit Renal Cortical Sodium-Inorganic Phosphate Messenger RNA and Protein Abundance. Pediatric Research, 1997, 41, 20-24.	2.3	17
119	Role of Thyroid Hormone in Regulation of Renal Phosphate Transport in Young and Aged Rats. Endocrinology, 1999, 140, 1544-1551.	2.8	17
120	Gentamicin causes endocytosis of Na/Pi cotransporter protein (NaPi-2). Kidney International, 2001, 59, 1024-1036.	5.2	16
121	Renal Phosphate–Transporter Regulatory Proteins and Nephrolithiasis. New England Journal of Medicine, 2008, 359, 1171-1173.	27.0	16
122	Shank2 redistributes with NaPilla during regulated endocytosis. American Journal of Physiology - Cell Physiology, 2010, 299, C1324-C1334.	4.6	16
123	Estrogen directly and specifically downregulates NaPi-lla through the activation of both estrogen receptor isoforms (ER \hat{I} ± and ER \hat{I} 2) in rat kidney proximal tubule. American Journal of Physiology - Renal Physiology, 2015, 308, F522-F534.	2.7	16
124	Inorganic Phosphate Modulates the Expression of the NaPi-2a Transporter in thetrans-Golgi Network and the Interaction with PIST in the Proximal Tubule. BioMed Research International, 2013, 2013, 1-9.	1.9	13
125	Regulation of the Renal Sodium-Dependent Phosphate Cotransporter NaPi ₂ (Npt2) in Acute Renal Failure due to Ischemia and Reperfusion. Nephron Physiology, 2005, 100, p1-p12.	1.2	12
126	Post-transplant hypophosphatemia. Kidney International, 2001, 59, 2377.	5.2	12

#	Article	IF	CITATIONS
127	Enhanced phosphate absorption in intestinal epithelial cellâ€specific NHE3 knockout mice. Acta Physiologica, 2022, 234, e13756.	3.8	11
128	Late-onset downregulation of NaPi-2 in experimental Fanconi syndrome. Pediatric Nephrology, 2001, 16, 412-416.	1.7	10
129	Role of PDZ Domain-Containing Proteins and ERM Proteins in Regulation of Renal Function and Dysfunction. Journal of the American Society of Nephrology: JASN, 2003, 14, 1949-1951.	6.1	10
130	Effect of Rocaltrol on Bone Mass in Patients with Pulmonary Disease Treated with Corticosteroids. Journal of Asthma, 2003, 40, 251-255.	1.7	9
131	Recovery of renal tubule phosphate reabsorption despite reduced levels of sodium-phosphate transporter. European Journal of Endocrinology, 2004, 151, 797-801.	3.7	9
132	Role of Vacuolar ATPase in the Trafficking of Renal Type IIa Sodium-phosphate Cotransporter. Cellular Physiology and Biochemistry, 2011, 27, 703-714.	1.6	9
133	Npt2 is the major mediator of renal phosphate transport. American Journal of Kidney Diseases, 2000, 36, 1276-1278.	1.9	8
134	Renal Phosphate–Wasting Disorders. Advances in Chronic Kidney Disease, 2006, 13, 155-165.	1.4	7
135	Identification and expression analysis of type II and type III P _i transporters in the opossum kidney cell line. Experimental Physiology, 2019, 104, 149-161.	2.0	7
136	Novel NaPi-2c mutations that cause mistargeting of NaPi-2c protein and uncoupling of Na-Pi cotransport cause HHRH. American Journal of Physiology - Renal Physiology, 2008, 295, F369-F370.	2.7	6
137	Do statins have a beneficial effect on the kidney?. Nature Clinical Practice Nephrology, 2006, 2, 666-667.	2.0	5
138	Dynamic Imaging of the Sodium Phosphate Cotransporters. Advances in Chronic Kidney Disease, 2011, 18, 145-150.	1.4	5
139	Albuminuria or CKD stage as best marker of CVD in diabetes?. Nature Reviews Nephrology, 2012, 8, 376-377.	9.6	5
140	Reduction of fibrosis and immune suppressive cells in ErbB2-dependent tumorigenesis by an LXR agonist. PLoS ONE, 2021, 16, e0248996.	2.5	5
141	Enhanced bioavailability of phosphonoformic acid by dietary phosphorus restriction. Biochemical Pharmacology, 1994, 48, 1455-1458.	4.4	4
142	Regulation of NaPi-Ila mRNA and transporter protein in chronic renal failure: role of parathyroid hormone (PTH) and dietary phosphate (Pi). Pflugers Archiv European Journal of Physiology, 2004, 449, 265-70.	2.8	4
143	Lipids and renal cystic disease. Nephrology Dialysis Transplantation, 2010, 25, 3490-3492.	0.7	4
144	Nuclear Receptor LXR: A New Partner for Sodium-Dependent Phosphate Cotransporters. Contributions To Nephrology, 2013, 180, 64-73.	1.1	4

#	Article	IF	CITATIONS
145	Aging and Kidney Disease., 2012,, 809-841.		4
146	Visualizing the regulation of SLC34 proteins at the apical membrane. Pflugers Archiv European Journal of Physiology, 2019, 471, 533-542.	2.8	3
147	Nuclear Receptors and Transcription Factors in Obesity-Related Kidney Disease. Seminars in Nephrology, 2021, 41, 318-330.	1.6	3
148	Constitutive depletion of Slc34a2/NaPi-IIb in rats causes perinatal mortality. Scientific Reports, 2021, 11, 7943.	3.3	2
149	Nitroprusside upregulates renal betaine/GABA transporter by membrane insertion. FASEB Journal, 2011, 25, 1038.11.	0.5	1
150	[14] Spectroscopy and microscopy of cells and cell membrane systems. Methods in Enzymology, 2003, 360, 330-345.	1.0	0
151	Nonlinear vibrational imaging of tissues. , 2009, , .		O
152	<i>AJP-Cell Physiology</i> initiates publication of the Hans H. Ussing Lecture. American Journal of Physiology - Cell Physiology, 2010, 299, C1221-C1221.	4.6	0
153	The Flux of Phosphate: Rapid Evolution. Advances in Chronic Kidney Disease, 2011, 18, 61-62.	1.4	O
154	Kidney diseases in the elderly. , 2019, , 342-347.		0
155	Renal diseases in the elderly. , 2012, , 362-370.		O
156	Diabetes and Chronic Kidney Disease. , 2014, , 43-55.		0
157	The Kidney in Liver Disease. , 0, , 619-638.		O