
Philipp Kickingereder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5374510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research Highlight: Use of Generative Images Created with Artificial Intelligence for Brain Tumor Imaging. Korean Journal of Radiology, 2022, 23, 500.	3.4	5
2	Corticosteroids use and neurocognitive functioning in patients with recurrent glioblastoma: Evidence from European Organization for Research and Treatment of Cancer (EORTC) trial 26101. Neuro-Oncology Practice, 2022, 9, 310-316.	1.6	7
3	Development and validation of an automated planning tool for navigated lumbosacral pedicle screws using a convolutional neural network. Spine Journal, 2022, 22, 1666-1676.	1.3	4
4	Simulated clinical deployment of fully automatic deep learning for clinical prostate MRI assessment. European Radiology, 2021, 31, 302-313.	4.5	24
5	nnU-Net for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 118-132.	1.3	148
6	Continuous-Time Deep Glioma Growth Models. Lecture Notes in Computer Science, 2021, , 83-92.	1.3	1
7	Response by Brugnara et al Regarding Article, "The Sense or Futility of Outcome Prediction in Acute Stroke for Endovascular Treatment Decision-Making― Stroke, 2021, 52, e85-e86.	2.0	0
8	Dynamics of cerebral perfusion and oxygenation parameters following endovascular treatment of acute ischemic stroke. Journal of NeuroInterventional Surgery, 2021, , neurintsurg-2020-017163.	3.3	7
9	BIMG-22. DEEP LEARNING SUPER-RESOLUTION MR SPECTROSCOPIC IMAGING TO MAP TUMOR METABOLISM IN MUTANT IDH GLIOMA PATIENTS. Neuro-Oncology Advances, 2021, 3, i5-i6.	0.7	0
10	Diagnostic biomarkers from proteomic characterization of cerebrospinal fluid in patients with brain malignancies. Journal of Neurochemistry, 2021, 158, 522-538.	3.9	18
11	Improved risk stratification via integration of radiomics and dosiomics features in patients with recurrent high-grade glioma undergoing carbon ion radiotherapy (CIRT) Journal of Clinical Oncology, 2021, 39, 2043-2043.	1.6	0
12	Optimal thresholds to predict long-term outcome after complete endovascular recanalization in acute anterior ischemic stroke. Journal of NeuroInterventional Surgery, 2021, 13, 1124-1127.	3.3	6
13	Tryptophan metabolism is inversely regulated in the tumor and blood of patients with glioblastoma. Theranostics, 2021, 11, 9217-9233.	10.0	16
14	Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. The Lancet Digital Health, 2021, 3, e784-e794.	12.3	52
15	T2/FLAIR-mismatch sign for noninvasive detection of IDH-mutant 1p/19q non-codeleted gliomas: validity and pathophysiology. Neuro-Oncology Advances, 2020, 2, vdaa004.	0.7	27
16	Automated volumetric assessment with artificial neural networks might enable a more accurate assessment of disease burden in patients with multiple sclerosis. European Radiology, 2020, 30, 2356-2364.	4.5	16
17	Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning. Stroke, 2020, 51, 3541-3551.	2.0	83
18	Methylome analyses of three glioblastoma cohorts reveal chemotherapy sensitivity markers within DDR genes. Cancer Medicine, 2020, 9, 8373-8385.	2.8	19

#	Article	IF	CITATIONS
19	Noninvasive Characterization of Tumor Angiogenesis and Oxygenation in Bevacizumab-treated Recurrent Glioblastoma by Using Dynamic Susceptibility MRI: Secondary Analysis of the European Organization for Research and Treatment of Cancer 26101 Trial. Radiology, 2020, 297, 164-175.	7.3	19
20	Validation of diffusion MRI phenotypes for predicting response to bevacizumab in recurrent glioblastoma: post-hoc analysis of the EORTC-26101 trial. Neuro-Oncology, 2020, 22, 1667-1676.	1.2	9
21	Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nature Communications, 2020, 11, 931.	12.8	112
22	Impact of slice thickness on clinical utility of automated Alberta Stroke Program Early Computed Tomography Scores. European Radiology, 2020, 30, 3137-3145.	4.5	12
23	Advanced Physiologic Imaging: Perfusion– Theory and Applications. , 2020, , 61-91.		3
24	Radiomics and Deep Learning from Research to Clinical Workflow: Neuro-Oncologic Imaging. Korean Journal of Radiology, 2020, 21, 1126.	3.4	25
25	Automated brain extraction of multisequence MRI using artificial neural networks. Human Brain Mapping, 2019, 40, 4952-4964.	3.6	284
26	Glial Tumors and Primary CNS Lymphoma. , 2019, , 1051-1074.		0
27	Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment. Radiology, 2019, 293, 607-617.	7.3	214
28	Glial Tumors and Primary CNS Lymphoma. , 2019, , 1-25.		1
29	Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncology, The, 2019, 20, 728-740.	10.7	271
30	Risk factors of intracranial hemorrhage after mechanical thrombectomy of anterior circulation ischemic stroke. Neuroradiology, 2019, 61, 461-469.	2.2	57
31	NIMG-02. NON-INVASIVE DETECTION OF IDH MUTANT 1p19q NON-CODELETED GLIOMAS USING THE T2-FLAIR MISMATCH SIGN. Neuro-Oncology, 2019, 21, vi161-vi161.	1.2	1
32	NIMG-09. NONINVASIVE PERFUSION IMAGING BIOMARKER OF MALIGNANT GENOTYPE IN ISOCITRATE DEHYDROGENASE MUTANT GLIOMAS. Neuro-Oncology, 2019, 21, vi163-vi163.	1.2	0
33	Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?. Investigative Radiology, 2019, 54, 653-660.	6.2	93
34	Radiomics, Metabolic, and Molecular MRI for Brain Tumors. Seminars in Neurology, 2018, 38, 032-040.	1.4	19
35	Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma. Neuro-Oncology, 2018, 20, 848-857.	1.2	170
36	Radiologic progression of glioblastoma under therapy—an exploratory analysis of AVAglio. Neuro-Oncology, 2018, 20, 557-566.	1.2	24

#	Article	IF	CITATIONS
37	Increased Delay Between Gadolinium Chelate Administration and T1-Weighted Magnetic Resonance Imaging Acquisition Increases Contrast-Enhancing Tumor Volumes and T1 Intensities in Brain Tumor Patients. Investigative Radiology, 2018, 53, 223-228.	6.2	3
38	ATIM-35. VXM01 PHASE I STUDY IN PATIENTS WITH PROGRESSIVE GLIOBLASTOMA – FINAL RESULTS. Neuro-Oncology, 2018, 20, vi9-vi9.	1.2	2
39	Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values. Radiology, 2018, 289, 128-137.	7.3	162
40	Voxel-wise radiogenomic mapping of tumor location with key molecular alterations in patients with glioma. Neuro-Oncology, 2018, 20, 1517-1524.	1.2	36
41	Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge. Lecture Notes in Computer Science, 2018, , 287-297.	1.3	244
42	VXM01 phase I study in patients with progressive glioblastoma: Final results Journal of Clinical Oncology, 2018, 36, 2017-2017.	1.6	87
43	Assessment of tumor oxygenation and its impact on treatment response in bevacizumab-treated recurrent glioblastoma. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 485-494.	4.3	32
44	Downfieldâ€NOEâ€suppressed amideâ€CESTâ€MRI at 7 Tesla provides a unique contrast in human glioblastoma. Magnetic Resonance in Medicine, 2017, 77, 196-208.	3.0	108
45	Pediatric Brain: No Increased Signal Intensity in the Dentate Nucleus on Unenhanced T1-weighted MR Images after Consecutive Exposure to a Macrocyclic Gadolinium-based Contrast Agent. Radiology, 2017, 283, 828-836.	7.3	74
46	Prediction of malignancy by a radiomic signature from contrast agentâ€free diffusion MRI in suspicious breast lesions found on screening mammography Journal of Magnetic Resonance Imaging, 2017, 46, 604-616.	3.4	113
47	Accuracy of 1H magnetic resonance spectroscopy for quantification of 2-hydroxyglutarate using linear combination and J-difference editing at 9.4 T. Zeitschrift Fur Medizinische Physik, 2017, 27, 300-309.	1.5	2
48	Update on the diagnostic value and safety of stereotactic biopsy for pediatric brainstem tumors: a systematic review and meta-analysis of 735 cases. Journal of Neurosurgery: Pediatrics, 2017, 20, 261-268.	1.3	90
49	Feasibility, Risk Profile and Diagnostic Yield of Stereotactic Biopsy in Children and Young Adults with Brain Lesions. Klinische Padiatrie, 2017, 229, 133-141.	0.6	14
50	Diagnostic challenges in meningioma. Neuro-Oncology, 2017, 19, 1588-1598.	1.2	106
51	No Signal Intensity Increase in the Dentate Nucleus on Unenhanced T1-weighted MR Images after More than 20 Serial Injections of Macrocyclic Gadolinium-based Contrast Agents. Radiology, 2017, 282, 699-707.	7.3	98
52	Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: A feasibility study in children and adolescents. PLoS ONE, 2017, 12, e0174524.	2.5	42
53	Differentiation of pseudoprogression and real progression in glioblastoma using ADC parametric response maps. PLoS ONE, 2017, 12, e0174620.	2.5	39
54	Brain Tumor Segmentation Using Large Receptive Field Deep Convolutional Neural Networks. Informatik Aktuell, 2017, , 86-91.	0.6	18

PHILIPP KICKINGEREDER

#	Article	IF	CITATIONS
55	Tumor Infiltration in Enhancing and Non-Enhancing Parts of Glioblastoma: A Correlation with Histopathology. PLoS ONE, 2017, 12, e0169292.	2.5	113
56	Factors triggering an additional resection and determining residual tumor volume on intraoperative MRI: analysis from a prospective single-center registry of supratentorial gliomas. Neurosurgical Focus, 2016, 40, E4.	2.3	33
57	Radiogenomics of Glioblastoma: Machine Learning–based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features. Radiology, 2016, 281, 907-918.	7.3	236
58	Large-scale Radiomic Profiling of Recurrent Glioblastoma Identifies an Imaging Predictor for Stratifying Anti-Angiogenic Treatment Response. Clinical Cancer Research, 2016, 22, 5765-5771.	7.0	230
59	Intraindividual Analysis of Signal Intensity Changes in the Dentate Nucleus After Consecutive Serial Applications of Linear and Macrocyclic Gadolinium-Based Contrast Agents. Investigative Radiology, 2016, 51, 683-690.	6.2	82
60	Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models. Radiology, 2016, 280, 880-889.	7.3	345
61	Clinical parameters outweigh diffusion- and perfusion-derived MRI parameters in predicting survival in newly diagnosed glioblastoma. Neuro-Oncology, 2016, 18, 1673-1679.	1.2	36
62	Prognostic value of combined visualization of MR diffusion and perfusion maps in glioblastoma. Journal of Neuro-Oncology, 2016, 126, 463-472.	2.9	21
63	MR Perfusion–derived Hemodynamic Parametric Response Mapping of Bevacizumab Efficacy in Recurrent Glioblastoma. Radiology, 2016, 279, 542-552.	7.3	51
64	Automatic Analysis of Cellularity in Glioblastoma and Correlation with ADC Using Trajectory Analysis and Automatic Nuclei Counting. PLoS ONE, 2016, 11, e0160250.	2.5	35
65	Response. Radiology, 2016, 279, 324-5.	7.3	Ο
66	IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Scientific Reports, 2015, 5, 16238.	3.3	259
67	High-Signal Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-Weighted Images. Investigative Radiology, 2015, 50, 805-810.	6.2	188
68	Increased Signal Intensity in the Dentate Nucleus on Unenhanced T1-Weighted Images After Gadobenate Dimeglumine Administration. Investigative Radiology, 2015, 50, 743-748.	6.2	151
69	Nuclear Overhauser Enhancement Imaging of Glioblastoma at 7 Tesla: Region Specific Correlation with Apparent Diffusion Coefficient and Histology. PLoS ONE, 2015, 10, e0121220.	2.5	36
70	Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. Neuro-Oncology, 2015, 17, 151-159.	1.2	90
71	Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neuro-Oncology, 2015, 17, 1139-1147.	1.2	89
72	Evaluation of dynamic contrast-enhanced MRI derived microvascular permeability in recurrent glioblastoma treated with bevacizumab. Journal of Neuro-Oncology, 2015, 121, 373-380.	2.9	43

Philipp Kickingereder

#	Article	IF	CITATIONS
73	Gadolinium Retention in the Dentate Nucleus and Globus Pallidus Is Dependent on the Class of Contrast Agent. Radiology, 2015, 275, 783-791.	7.3	507
74	Asymmetry of Deep Medullary Veins on Susceptibility Weighted MRI in Patients with Acute MCA Stroke Is Associated with Poor Outcome. PLoS ONE, 2015, 10, e0120801.	2.5	49
75	Quantification of Tumor Vessels in Glioblastoma Patients Using Time-of-Flight Angiography at 7 Tesla: A Feasibility Study. PLoS ONE, 2014, 9, e110727.	2.5	30
76	Evaluation of Microvascular Permeability with Dynamic Contrast-Enhanced MRI for the Differentiation of Primary CNS Lymphoma and Glioblastoma: Radiologic-Pathologic Correlation. American Journal of Neuroradiology, 2014, 35, 1503-1508.	2.4	84
77	Primary Central Nervous System Lymphoma and Atypical Glioblastoma: Multiparametric Differentiation by Using Diffusion-, Perfusion-, and Susceptibility-weighted MR Imaging. Radiology, 2014, 272, 843-850.	7.3	137
78	Low-dose rate stereotactic iodine-125 brachytherapy for the treatment of inoperable primary and recurrent glioblastoma: single-center experience with 201 cases. Journal of Neuro-Oncology, 2014, 120, 615-623.	2.9	34
79	Nuclear Overhauser Enhancement Mediated Chemical Exchange Saturation Transfer Imaging at 7 Tesla in Glioblastoma Patients. PLoS ONE, 2014, 9, e104181.	2.5	62
80	Brain Metastases: Treatment with Stereotactic Iodine-125 Brachytherapy. Tumors of the Central Nervous System, 2014, , 173-186.	0.1	0
81	BRAF V600Eâ€specific immunohistochemistry for the exclusion of Lynch syndrome in MSIâ€H colorectal cancer. International Journal of Cancer, 2013, 133, 1624-1630.	5.1	93
82	AKT1E17K mutations cluster with meningothelial and transitional meningiomas and can be detected by SFRP1 immunohistochemistry. Acta Neuropathologica, 2013, 126, 757-762.	7.7	88
83	Stereotactic iodine-125 brachytherapy for the treatment of WHO grades II and III gliomas located in the central sulcus region. Neuro-Oncology, 2013, 15, 1721-1731.	1.2	24
84	Diagnostic Value and Safety of Stereotactic Biopsy for Brainstem Tumors. Neurosurgery, 2013, 72, 873-882.	1.1	83
85	Stereotactic iodine-125 brachytherapy for treatment of inoperable focal brainstem gliomas of WHO grades I and II: feasibility and long-term outcome. Journal of Neuro-Oncology, 2012, 109, 273-283.	2.9	29
86	Intracavitary brachytherapy using stereotactically applied phosphorus-32 colloid for treatment of cystic craniopharyngiomas in 53 patients. Journal of Neuro-Oncology, 2012, 109, 365-374.	2.9	45
87	Stereotactic biopsy combined with stereotactic 125iodine brachytherapy for diagnosis and treatment of locally recurrent single brain metastases. Journal of Neuro-Oncology, 2011, 105, 109-118.	2.9	28
88	Deep Learning Super-resolution MR Spectroscopic Imaging of Brain Metabolism and Mutant IDH Glioma. Neuro-Oncology Advances, 0, , .	0.7	2