Lauren Stewart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5373392/publications.pdf

Version: 2024-02-01

99 papers

4,213 citations

32 h-index 61 g-index

105 all docs 105 docs citations

105 times ranked 3042 citing authors

#	Article	IF	CITATIONS
1	The Musicality of Non-Musicians: An Index for Assessing Musical Sophistication in the General Population. PLoS ONE, 2014, 9, e89642.	2.5	618
2	Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study. Neuropsychologia, 2001, 39, 415-419.	1.6	273
3	Music and the brain: disorders of musical listening. Brain, 2006, 129, 2533-2553.	7.6	264
4	Intonation processing in congenital amusia: discrimination, identification and imitation. Brain, 2010, 133, 1682-1693.	7.6	169
5	Singing and social bonding: changes in connectivity and pain threshold as a function of group size. Evolution and Human Behavior, 2016, 37, 152-158.	2.2	146
6	Brain changes after learning to read and play music. NeuroImage, 2003, 20, 71-83.	4.2	133
7	Electrophysiological correlates of melodic processing in congenital amusia. Neuropsychologia, 2013, 51, 1749-1762.	1.6	123
8	Memory for pitch in congenital amusia: Beyond a fine-grained pitch discrimination problem. Memory, 2010, 18, 657-669.	1.7	113
9	Developmental phonagnosia: A selective deficit of vocal identity recognition. Neuropsychologia, 2009, 47, 123-131.	1.6	110
10	Reduced sensitivity to emotional prosody in congenital amusia rekindles the musical protolanguage hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19027-19032.	7.1	107
11	How do "earworms―start? Classifying the everyday circumstances of Involuntary Musical Imagery. Psychology of Music, 2012, 40, 259-284.	1.6	90
12	TMS Produces Two Dissociable Types of Speech Disruption. NeuroImage, 2001, 13, 472-478.	4.2	75
13	Left posterior BA37 is involved in object recognition: a TMS study. Neuropsychologia, 2001, 39, 1-6.	1.6	7 5
14	Singing and social bonding: changes in connectivity and pain threshold as a function of group size. Evolution and Human Behavior, 2016, 37, 152-158.	2.2	68
15	Tracking of pitch probabilities in congenital amusia. Neuropsychologia, 2012, 50, 1483-1493.	1.6	67
16	Faster decline of pitch memory over time in congenital amusia. Advances in Cognitive Psychology, 2010, 6, 15-22.	0.5	65
17	Reading music modifies spatial mapping in pianists. Perception & Psychophysics, 2004, 66, 183-195.	2.3	58
18	USES AND FUNCTIONS OF MUSIC IN CONGENITAL AMUSIA. Music Perception, 2008, 25, 345-355.	1.1	54

#	Article	IF	CITATIONS
19	fMRI Evidence for a Cortical Hierarchy of Pitch Pattern Processing. PLoS ONE, 2008, 3, e1470.	2.5	50
20	Fractionating the musical mind: insights from congenital amusia. Current Opinion in Neurobiology, 2008, 18, 127-130.	4.2	49
21	The Mechanism of Speech Processing in Congenital Amusia: Evidence from Mandarin Speakers. PLoS ONE, 2012, 7, e30374.	2.5	49
22	Tunes stuck in your brain: The frequency and affective evaluation of involuntary musical imagery correlate with cortical structure. Consciousness and Cognition, 2015, 35, 66-77.	1.5	48
23	Dissecting an earworm: Melodic features and song popularity predict involuntary musical imagery Psychology of Aesthetics, Creativity, and the Arts, 2017, 11, 122-135.	1.3	47
24	The role of transcranial magnetic stimulation (TMS) in studies of vision, attention and cognition. Acta Psychologica, 2001, 107, 275-291.	1.5	45
25	Detection of the arcuate fasciculus in congenital amusia depends on the tractography algorithm. Frontiers in Psychology, 2015, 6, 9.	2.1	45
26	Navigating the Auditory Scene: An Expert Role for the Hippocampus. Journal of Neuroscience, 2012, 32, 12251-12257.	3.6	42
27	Sticky Tunes: How Do People React to Involuntary Musical Imagery?. PLoS ONE, 2014, 9, e86170.	2.5	42
28	EPS Prize Lecture: Characterizing congenital amusia. Quarterly Journal of Experimental Psychology, 2011, 64, 625-638.	1.1	41
29	Perception of musical timbre in congenital amusia: Categorization, discrimination and short-term memory. Neuropsychologia, 2012, 50, 367-378.	1.6	41
30	Grapheme-color and tone-color synesthesia is associated with structural brain changes in visual regions implicated in color, form, and motion. Cognitive Neuroscience, 2012, 3, 29-35.	1.4	39
31	Preserved Statistical Learning of Tonal and Linguistic Material in Congenital Amusia. Frontiers in Psychology, 2011, 2, 109.	2.1	37
32	The Involuntary Musical Imagery Scale (IMIS) Psychomusicology: Music, Mind and Brain, 2015, 25, 28-36.	0.3	37
33	Do musicians have different brains?. Clinical Medicine, 2008, 8, 304-308.	1.9	36
34	The Experience of Music in Congenital Amusia. Music Perception, 2012, 30, 1-18.	1.1	36
35	Individual Differences Predict Patterns in Spontaneous Involuntary Musical Imagery. Music Perception, 2014, 31, 323-338.	1.1	36
36	An Agenda for Best Practice Research on Group Singing, Health, and Well-Being. Music & Science, 2019, 2, 205920431986171.	1.0	36

#	Article	IF	CITATIONS
37	Impaired socio-emotional processing in a developmental music disorder. Scientific Reports, 2016, 6, 34911.	3.3	34
38	Motion perception and perceptual learning studied by magnetic stimulation. Electroencephalography and Clinical Neurophysiology Supplement, 1999, 51, 334-50.	0.0	33
39	Cortical Mechanisms for the Segregation and Representation of Acoustic Textures. Journal of Neuroscience, 2010, 30, 2070-2076.	3.6	31
40	Music@Home: A novel instrument to assess the home musical environment in the early years. PLoS ONE, 2018, 13, e0193819.	2.5	31
41	Transcranial Magnetic Stimulation Produces Speech Arrest but Not Song Arrest. Annals of the New York Academy of Sciences, 2001, 930, 433-435.	3.8	30
42	Approaches to the cortical analysis of auditory objects. Hearing Research, 2007, 229, 46-53.	2.0	30
43	Individuals with congenital amusia imitate pitches more accurately in singing than in speaking: Implications for music and language processing. Attention, Perception, and Psychophysics, 2013, 75, 1783-1798.	1.3	29
44	Dysrhythmia: a specific congenital rhythm perception deficit. Frontiers in Psychology, 2014, 5, 18.	2.1	29
45	The relationship between pitch and space in congenital amusia. Brain and Cognition, 2011, 76, 70-76.	1.8	28
46	Prenatal listening to songs composed for pregnancy and symptoms of anxiety and depression: a pilot study. BMC Complementary and Alternative Medicine, 2017, 17, 256.	3.7	28
47	Perception and action de-coupling in congenital amusia: Sensitivity to task demands. Neuropsychologia, 2012, 50, 172-180.	1.6	27
48	Action–perception coupling in pianists: Learned mappings or spatial musical association of response codes (SMARC) effect?. Quarterly Journal of Experimental Psychology, 2013, 66, 37-50.	1.1	27
49	The speed of our mental soundtracks: Tracking the tempo of involuntary musical imagery in everyday life. Memory and Cognition, 2015, 43, 1229-1242.	1.6	27
50	Is there potential for learning in amusia? A study of the effect of singing intervention in congenital amusia. Annals of the New York Academy of Sciences, 2012, 1252, 345-353.	3.8	26
51	Constructing optimal experience for the hospitalized newborn through neuro-based music therapy. Frontiers in Human Neuroscience, 2015, 9, 487.	2.0	26
52	A Neurocognitive Approach to Music Reading. Annals of the New York Academy of Sciences, 2005, 1060, 377-386.	3.8	25
53	Becoming a Pianist. Annals of the New York Academy of Sciences, 2003, 999, 204-208.	3.8	24
54	Affective evaluation of simultaneous tone combinations in congenital amusia. Neuropsychologia, 2015, 78, 207-220.	1.6	23

#	Article	IF	CITATIONS
55	Reducing Chronic Visuo-Spatial Neglect Following Right Hemisphere Stroke Through Instrument Playing. Frontiers in Human Neuroscience, 2014, 8, 413.	2.0	22
56	A Novel Indirect Method for Capturing Involuntary Musical Imagery under Varying Cognitive Load. Quarterly Journal of Experimental Psychology, 2017, 70, 2189-2199.	1.1	21
57	Probing imagined tempo for music: Effects of motor engagement and musical experience. Psychology of Music, 2016, 44, 1274-1288.	1.6	19
58	The challenges and benefits of a genuine partnership between Music Therapy and Neuroscience: a dialog between scientist and therapist. Frontiers in Human Neuroscience, 2015, 9, 223.	2.0	18
59	Motivating Stroke Rehabilitation Through Music. , 2016, , .		18
60	The impact of the home musical environment on infants' language development. , 2021, 65, 101651.		16
61	Signals through music and dance: Perceived social bonds and formidability on collective movement. Acta Psychologica, 2020, 208, 103093.	1.5	15
62	The effect of exercise-induced arousal on chosen tempi for familiar melodies. Psychonomic Bulletin and Review, 2015, 22, 559-565.	2.8	14
63	Community psychosocial music intervention (CHIME) to reduce antenatal common mental disorder symptoms in The Gambia: a feasibility trial. BMJ Open, 2020, 10, e040287.	1.9	13
64	Involuntary and voluntary recall of musical memories: A comparison of temporal accuracy and emotional responses. Memory and Cognition, 2018, 46, 741-756.	1.6	12
65	Altered functional connectivity during speech perception in congenital amusia. ELife, 2020, 9, .	6.0	12
66	Congenital amusia. Current Biology, 2006, 16, R904-R906.	3.9	11
67	How music may support perinatal mental health: an overview. Archives of Women's Mental Health, 2021, 24, 831-839.	2.6	11
68	Pitch-change detection and pitch-direction discrimination in children Psychomusicology: Music, Mind and Brain, 2013, 23, 73-81.	0.3	10
69	The Effect of a Voice-Centered Psycho-Educational Program on Maternal Self-Efficacy: A Feasibility Study. International Journal of Environmental Research and Public Health, 2021, 18, 2537.	2.6	10
70	Congenital Amusia: All the Songs Sound the Same. Current Biology, 2002, 12, R420-R421.	3.9	9
71	Music Perception: Sounds Lost inÂSpace. Current Biology, 2007, 17, R892-R893.	3.9	9
72	Congenital amusia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 111, 237-239.	1.8	9

#	Article	IF	Citations
73	Involvement of the larynx motor area in singing-voice perception: a TMS studyâ€. Frontiers in Psychology, 2013, 4, 418.	2.1	8
74	A Developmental Study of Latent Absolute Pitch Memory. Quarterly Journal of Experimental Psychology, 2017, 70, 434-443.	1.1	8
75	The German Music@Home: Validation of a questionnaire measuring at home musical exposure and interaction of young children. PLoS ONE, 2020, 15, e0235923.	2.5	8
76	Neuropsychology: Music of the hemispheres. Current Biology, 2001, 11, R125-R127.	3.9	7
77	Saccadic Eye-Movements Suppress Visual Mental Imagery and Partly Reduce Emotional Response During Music Listening. Music & Science, 2020, 3, 205920432095958.	1.0	7
78	Musical thrills and chills. Trends in Cognitive Sciences, 2007, 11, 5-6.	7.8	6
79	What are the implications of neuroscience for musical education?. Educational Research, 2008, 50, 177-186.	1.8	5
80	Evaluation of musical skills in children with a diagnosis of an auditory processing disorder. International Journal of Pediatric Otorhinolaryngology, 2010, 74, 633-636.	1.0	5
81	Action-perception coupling in violinists. Frontiers in Human Neuroscience, 2013, 7, 349.	2.0	5
82	Timbre-colour synaesthesia: Exploring the consistency of associations based on timbre. Cortex, 2015, 63, 1-3.	2.4	5
83	OUP accepted manuscript. Health Promotion International, 2022, , .	1.8	5
84	Zoning in on music and the brain. Trends in Cognitive Sciences, 2002, 6, 451.	7.8	4
85	Disorders of Musical Cognition. , 2012, , .		4
86	A study protocol for testing the feasibility of a randomised stepped wedge cluster design to investigate a Community Health Intervention through Musical Engagement (CHIME) for perinatal mental health in The Gambia. Pilot and Feasibility Studies, 2019, 5, 124.	1.2	4
87	Melodic expectations in 5- and 6-year-old children. Journal of Experimental Child Psychology, 2021, 203, 105020.	1.4	3
88	Real-time auditory feedback may reduce abnormal movements in patients with chronic stroke. Disability and Rehabilitation, 2023, 45, 613-619.	1.8	3
89	Neurocognitive Studies of Musical Literacy Acquisition. Musicae Scientiae, 2005, 9, 223-237.	2.9	2
90	Infant Learning: Music and the Baby Brain. Current Biology, 2005, 15, R882-R884.	3.9	2

#	Article	IF	CITATIONS
91	Universal dyslexia?. Trends in Cognitive Sciences, 2001, 5, 188.	7.8	0
92	Attending and intending. Trends in Cognitive Sciences, 2001, 5, 284.	7.8	0
93	Experiences from â€~Brain Camp'. Trends in Cognitive Sciences, 2001, 5, 465.	7.8	O
94	Priming: a tool for imaging. Trends in Cognitive Sciences, 2001, 5, 511.	7.8	0
95	Probing perceptual asynchrony. Trends in Cognitive Sciences, 2002, 6, 153.	7.8	0
96	MSc in Music, Mind and Brain at Goldsmiths, University of London Psychomusicology: Music, Mind and Brain, 2009, 20, 177-179.	0.3	0
97	Magnetic stimulation in studies of vision and attention. , 2003, , 162-176.		O
98	Editorial for the Special Issue on Neurosciences and Music: Part 2 Psychomusicology: Music, Mind and Brain, 2015, 25, 355-356.	0.3	0
99	Music Reading: A Cognitive Neuroscience Approach. , 0, , 162-170.		O