Hong Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5373144/publications.pdf Version: 2024-02-01

HONG TANG

#	Article	IF	CITATIONS
1	Bending as a control knob for the electronic and optical properties of phosphorene nanoribbons. Physical Review Materials, 2022, 6, .	2.4	4
2	Tunable band gaps and optical absorption properties of bent MoS2 nanoribbons. Scientific Reports, 2022, 12, 3008.	3.3	14
3	Describing adsorption of benzene, thiophene, and xenon on coinage metals by using the Zaremba–Kohn theory-based model. Journal of Chemical Physics, 2021, 154, 124705.	3.0	4
4	van der Waals corrected density functionals for cylindrical surfaces: Ammonia and nitrogen dioxide adsorbed on a single-walled carbon nanotube. Physical Review B, 2021, 103, .	3.2	2
5	Opening band gaps of low-dimensional materials at the meta-GGA level of density functional approximations. Physical Review Materials, 2021, 5, .	2.4	18
6	Simple hydrogenic estimates for the exchange and correlation energies of atoms and atomic ions, with implications for density functional theory. Journal of Chemical Physics, 2020, 153, 074114.	3.0	10
7	Density functionals combined with van der Waals corrections for graphene adsorbed on layered materials. Physical Review B, 2020, 101, .	3.2	8
8	Molecule-surface interaction from van der Waals-corrected semilocal density functionals: The example of thiophene on transition-metal surfaces. Physical Review Materials, 2020, 4, .	2.4	13
9	Long-range dispersion-corrected density functional for noncovalent interactions. International Journal of Modern Physics B, 2019, 33, 1950300.	2.0	5
10	van der Waals Correction to the Physisorption of Graphene on Metal Surfaces. Journal of Physical Chemistry C, 2019, 123, 13748-13757.	3.1	18
11	Modeling the physisorption of graphene on metals. Physical Review B, 2018, 97, .	3.2	15
12	Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures. Journal of Chemical Physics, 2018, 148, 074110.	3.0	39
13	Accurate lattice geometrical parameters and bulk moduli from a semilocal density functional. AIP Advances, 2018, 8, .	1.3	15
14	Comparative study of the properties of ionic solids from density functionals. Materials Research Express, 2018, 5, 076302.	1.6	8
15	Reply to Ziegler et al.: Electrorheological technology to make chocolate healthier and tastier. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6319-E6320.	7.1	2
16	Reply to Smith: Electrorheological technology reduces the chocolate viscosity and fat level. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5255-E5256.	7.1	1
17	Electrorheology leads to healthier and tastier chocolate. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7399-7402.	7.1	54
18	ELECTRORHEOLOGY IMPROVES TRANSPORTATION OF CRUDE OIL., 2011, , .		0