Karl-Ferdinand Lechtreck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5372445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. ELife, 2022, 11, .	6.0	17
2	Bardet–Biedl syndrome 3 protein promotes ciliary exit of the signaling protein phospholipase D via the BBSome. ELife, 2021, 10, .	6.0	27
3	<i>In vivo</i> imaging shows continued association of several IFT-A, IFT-B and dynein complexes while IFT trains U-turn at the tip. Journal of Cell Science, 2021, 134, .	2.0	28
4	IFT54 directly interacts with kinesinâ€II and IFT dynein to regulate anterograde intraflagellar transport. EMBO Journal, 2021, 40, e105781.	7.8	28
5	Diffusion rather than IFT likely provides most of the tubulin required for axonemal assembly. Journal of Cell Science, 2020, 133, .	2.0	33
6	Intraflagellar transport protein RABL5/IFT22 recruits the BBSome to the basal body through the GTPase ARL6/BBS3. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2496-2505.	7.1	37
7	<i>Chlamydomonas</i> PKD2 organizes mastigonemes, hair-like glycoprotein polymers on cilia. Journal of Cell Biology, 2020, 219, .	5.2	40
8	The BBSome restricts entry of tagged carbonic anhydrase 6 into the cis-flagellum of Chlamydomonas reinhardtii. PLoS ONE, 2020, 15, e0240887.	2.5	13
9	LF4/MOK and a CDK-related kinase regulate the number and length of cilia in Tetrahymena. PLoS Genetics, 2019, 15, e1008099.	3.5	27
10	A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia. Journal of Cell Science, 2019, 132, .	2.0	53
11	The IDA3 adapter, required for intraflagellar transport of 11 dynein, is regulated by ciliary length. Molecular Biology of the Cell, 2018, 29, 886-896.	2.1	37
12	The Bardet–Biedl syndrome protein complex is an adapter expanding the cargo range of intraflagellar transport trains for ciliary export. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E934-E943.	7.1	107
13	Cover Image, Volume 75, Issue 8. Cytoskeleton, 2018, 75, C1-C1.	2.0	0
14	Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays in Biochemistry, 2018, 62, 753-763.	4.7	120
15	Proteins that control the geometry of microtubules at the ends of cilia. Journal of Cell Biology, 2018, 217, 4298-4313.	5.2	46
16	Chlamydomonas Basal Bodies as Flagella Organizing Centers. Cells, 2018, 7, 79.	4.1	29
17	In vivo analyses of radial spoke transport, assembly, repair and maintenance. Cytoskeleton, 2018, 75, 352-362.	2.0	20
18	In vivo analysis of outer arm dynein transport reveals cargo-specific intraflagellar transport properties. Molecular Biology of the Cell, 2018, 29, 2553-2565.	2.1	47

#	Article	IF	CITATIONS
19	Protein transport in growing and steadyâ€state cilia. Traffic, 2017, 18, 277-286.	2.7	46
20	Cell Cycle-Related Kinase (CCRK) regulates ciliogenesis and Hedgehog signaling in mice. PLoS Genetics, 2017, 13, e1006912.	3.5	36
21	H+- and Na+- elicited rapid changes of the microtubule cytoskeleton in the biflagellated green alga Chlamydomonas. ELife, 2017, 6, .	6.0	12
22	IFT trains in different stages of assembly queue at the ciliary base for consecutive release into the cilium. ELife, 2017, 6, .	6.0	90
23	Methods for Studying Movement of Molecules Within Cilia. Methods in Molecular Biology, 2016, 1454, 83-96.	0.9	24
24	The IFT81 and IFT74 N-termini together form the major module for intraflagellar transport of tubulin. Journal of Cell Science, 2016, 129, 2106-19.	2.0	81
25	Single-particle imaging reveals intraflagellar transport–independent transport and accumulation of EB1 in <i>Chlamydomonas</i> flagella. Molecular Biology of the Cell, 2016, 27, 295-307.	2.1	56
26	Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. Journal of Cell Biology, 2015, 208, 223-237.	5.2	184
27	Kinesin-13 regulates the quantity and quality of tubulin inside cilia. Molecular Biology of the Cell, 2015, 26, 478-494.	2.1	27
28	Total internal reflection fluorescence microscopy of intraflagellar transport in Tetrahymena thermophila. Methods in Cell Biology, 2015, 127, 445-456.	1.1	17
29	IFT–Cargo Interactions and Protein Transport in Cilia. Trends in Biochemical Sciences, 2015, 40, 765-778.	7.5	282
30	Getting tubulin to the tip of the cilium: One IFT train, many different tubulin cargoâ€binding sites?. BioEssays, 2014, 36, 463-467.	2.5	36
31	Nephrocystin-4 controls ciliary trafficking of membrane and large soluble proteins at the transition zone. Journal of Cell Science, 2014, 127, 4714-27.	2.0	80
32	Flagellar central pair assembly in Chlamydomonas reinhardtii. Cilia, 2013, 2, 15.	1.8	52
33	A Differential Cargo-Loading Model of Ciliary Length Regulation by IFT. Current Biology, 2013, 23, 2463-2471.	3.9	163
34	Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase. Journal of Cell Biology, 2013, 201, 249-261.	5.2	131
35	In vivo Imaging of IFT in Chlamydomonas Flagella. Methods in Enzymology, 2013, 524, 265-284.	1.0	31
36	Avalanche-like behavior in ciliary import. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3925-3930.	7.1	110

Karl-Ferdinand Lechtreck

#	Article	IF	CITATIONS
37	CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. Journal of Cell Biology, 2010, 190, 927-940.	5.2	345
38	Characterization of Novel BBS Mutants in Chlamydomonas reinhardtii. FASEB Journal, 2010, 24, lb141.	0.5	0
39	Total Internal Reflection Fluorescence (TIRF) Microscopy of Chlamydomonas Flagella. Methods in Cell Biology, 2009, 93, 157-177.	1.1	43
40	High-Speed Digital Imaging of Ependymal Cilia in the Murine Brain. Methods in Cell Biology, 2009, 91, 255-264.	1.1	13
41	The <i>Chlamydomonas reinhardtii</i> BBSome is an IFT cargo required for export of specific signaling proteins from flagella. Journal of Cell Biology, 2009, 187, 1117-1132.	5.2	314
42	HAâ€ŧagging of putative flagellar proteins in <i>Chlamydomonas reinhardtii</i> identifies a novel protein of intraflagellar transport complex B. Cytoskeleton, 2009, 66, 469-482.	4.4	64
43	Proteins related to green algal striated fiber assemblin are present in stramenopiles and alveolates. Protoplasma, 2009, 236, 97-101.	2.1	11
44	Mutations in <i>Hydin</i> impair ciliary motility in mice. Journal of Cell Biology, 2008, 180, 633-643.	5.2	236
45	Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. Journal of Cell Biology, 2007, 176, 473-482.	5.2	151
46	GFP as a tool for the analysis of proteins in the flagellar basal apparatus ofChlamydomonas. Cytoskeleton, 2005, 61, 189-200.	4.4	22
47	The NIT1 Promoter Allows Inducible and Reversible Silencing of Centrin in Chlamydomonas reinhardtii. Eukaryotic Cell, 2005, 4, 1959-1962.	3.4	32
48	Striated fiber assemblin in apicomplexan parasites. Molecular and Biochemical Parasitology, 2003, 128, 95-99.	1.1	18
49	FLAGELLAR REGENERATION IN <i>SPERMATOZOPSIS SIMILIS</i> (CHLOROPHYTA). Journal of Phycology, 2003, 39, 918-922.	2.3	9
50	Centrin deficiency inChlamydomonascauses defects in basal body replication, segregation and maturation. Journal of Cell Science, 2003, 116, 2635-2646.	2.0	108
51	Analysis of <i>Chlamydomonas</i> SF-assemblin by GFP tagging and expression of antisense constructs. Journal of Cell Science, 2002, 115, 1511-1522.	2.0	46
52	Analysis of Chlamydomonas SF-assemblin by GFP tagging and expression of antisense constructs. Journal of Cell Science, 2002, 115, 1511-22.	2.0	38
53	MITOSIS INDUNALIELLA BIOCULATA(CHLOROPHYTA): CENTRIN BUT NOT BASAL BODIES ARE AT THE SPINDLE POLES. Journal of Phycology, 2001, 37, 1030-1043.	2.3	7
54	Basal body replication in green algae – when and where does it start?. European Journal of Cell Biology, 2001, 80, 631-641.	3.6	9

#	Article	IF	CITATIONS
55	Distribution of polyglutamylated tubulin in the flagellar apparatus of green flagellates. Cytoskeleton, 2000, 47, 219-235.	4.4	83
56	Evidence for a Direct Role of Nascent Basal Bodies During Spindle Pole Initiation in the Green Alga Spermatozopsis similis. Protist, 1999, 150, 163-181.	1.5	41
57	A Novel Basal Apparatus Protein of 90 kD (BAp90) from the Flagellate Green Alga Spermatozopsis similis is a Component of the Proximal Plates and Identifies the d-(dexter)Surface of the Basal Body. Protist, 1998, 149, 173-184.	1.5	13
58	Analysis of striated fiber formation by recombinant SF-assemblin in Vitro. Journal of Molecular Biology, 1998, 279, 423-438.	4.2	11
59	THE CYTOSKELETON OF THE NAKED GREEN FLAGELLATE SPERMATOZOPSIS SIMILIS (CHLOROPHYTA):FLAGELLAR AND BASAL BODY DEVELOPMENTAL CYCLE1. Journal of Phycology, 1997, 33, 254-265.	2.3	22
60	SF-assemblin inChlamydomonas: Sequence conservation and localization during the cell cycle. , 1997, 36, 190-201.		30
61	Purification and characterization of basal apparatuses from a flagellate green alga. , 1997, 37, 72-85.		55