David Burstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5372223/publications.pdf

Version: 2024-02-01

186265 330143 5,499 36 28 37 citations h-index g-index papers 41 41 41 6912 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature, 2016, 538, 270-273.	27.8	854
2	Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 2018, 362, 839-842.	12.6	757
3	New CRISPR–Cas systems from uncultivated microbes. Nature, 2017, 542, 237-241.	27.8	471
4	Differential GC Content between Exons and Introns Establishes Distinct Strategies of Splice-Site Recognition. Cell Reports, 2012, 1, 543-556.	6.4	249
5	Genome-Scale Identification of Legionella pneumophila Effectors Using a Machine Learning Approach. PLoS Pathogens, 2009, 5, e1000508.	4.7	236
6	Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nature Genetics, 2016, 48, 167-175.	21.4	235
7	RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes. Molecular Cell, 2017, 66, 373-383.e3.	9.7	229
8	Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nature Communications, 2016, 7, 10613.	12.8	224
9	Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO ₂ concentrations. Environmental Microbiology, 2017, 19, 459-474.	3.8	212
10	The Average Common Substring Approach to Phylogenomic Reconstruction. Journal of Computational Biology, 2006, 13, 336-350.	1.6	184
11	Mediterranean grassland soil C–N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms. Nature Microbiology, 2019, 4, 1356-1367.	13.3	170
12	Computational modeling and experimental validation of the <i>Legionella</i> and <i>Coxiella</i> virulence-related type-IVB secretion signal. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E707-15.	7.1	166
13	Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Research, 2008, 18, 88-103.	5.5	161
14	Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME Journal, 2017, 11, 1915-1929.	9.8	137
15	Accurate, multi-kb reads resolve complex populations and detect rare microorganisms. Genome Research, 2015, 25, 534-543.	5.5	121
16	The distinction of CPR bacteria from other bacteria based on protein family content. Nature Communications, 2019, 10, 4173.	12.8	112
17	Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Research, 2017, 27, 601-612.	5.5	99
18	Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons. Genome Research, 2012, 22, 35-50.	5 . 5	88

#	Article	IF	CITATIONS
19	Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nature Communications, 2019, 10, 463.	12.8	87
20	Novel Microbial Diversity and Functional Potential in the Marine Mammal Oral Microbiome. Current Biology, 2017, 27, 3752-3762.e6.	3.9	82
21	Identification of novel <scp><i>X</i></scp> <i>anthomonas euvesicatoria</i> type <scp>III</scp> effector proteins by a machineâ€learning approach. Molecular Plant Pathology, 2016, 17, 398-411.	4.2	66
22	DNA motifs determining the efficiency of adaptation into the <i>Escherichia coli</i> Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14396-14401.	7.1	62
23	Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nature Microbiology, 2017, 2, 17045.	13.3	62
24	Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum. Peerl, 2016, 4, e1607.	2.0	57
25	Identification of Novel Coxiella burnetii Icm/Dot Effectors and Genetic Analysis of Their Involvement in Modulating a Mitogen-Activated Protein Kinase Pathway. Infection and Immunity, 2014, 82, 3740-3752.	2.2	55
26	A scoutRNA Is Required for Some Type V CRISPR-Cas Systems. Molecular Cell, 2020, 79, 416-424.e5.	9.7	49
27	Engineered B cells expressing an anti-HIV antibody enable memory retention, isotype switching and clonal expansion. Nature Communications, 2020, $11,5851$.	12.8	42
28	Novel Type III Effectors in Pseudomonas aeruginosa. MBio, 2015, 6, e00161.	4.1	37
29	Uncovering the co-evolutionary network among prokaryotic genes. Bioinformatics, 2012, 28, i389-i394.	4.1	36
30	CoPAP: Coevolution of Presence–Absence Patterns. Nucleic Acids Research, 2013, 41, W232-W237.	14.5	30
31	Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Molecular Cell, 2022, 82, 1199-1209.e6.	9.7	29
32	Native homing endonucleases can target conserved genes in humans and in animal models. Nucleic Acids Research, 2011, 39, 6646-6659.	14.5	27
33	A Machine Learning Approach To Identify Hydrogenosomal Proteins in Trichomonas vaginalis. Eukaryotic Cell, 2012, 11, 217-228.	3.4	24
34	A Functional Mini-Integrase in a Two-Protein Type V-C CRISPR System. Molecular Cell, 2019, 73, 727-737.e3.	9.7	22
35	Information Theoretic Approaches to Whole Genome Phylogenies. Lecture Notes in Computer Science, 2005, , 283-295.	1.3	6
36	Tiny Hidden Genes within Our Microbiome. Cell, 2019, 178, 1034-1035.	28.9	1

3