Joan Comella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5371694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intracellular pathways involved in cell survival are deregulated in mouse and human spinal muscular atrophy motoneurons. Neurobiology of Disease, 2021, 155, 105366.	4.4	4
2	<i>Faim</i> knockout leads to gliosis and lateâ€onset neurodegeneration of photoreceptors in the mouse retina. Journal of Neuroscience Research, 2021, 99, 3103-3120.	2.9	5
3	FAIM-L - SIVA-1: Two Modulators of XIAP in Non-Apoptotic Caspase Function. Frontiers in Cell and Developmental Biology, 2021, 9, 826037.	3.7	0
4	FAIM Is Regulated by MiR-206, MiR-1-3p and MiR-133b. Frontiers in Cell and Developmental Biology, 2020, 8, 584606.	3.7	11
5	SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death and Disease, 2020, 11, 82.	6.3	7
6	Combining magnetic nanoparticles and icosahedral boron clusters in biocompatible inorganic nanohybrids for cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 101986.	3.3	27
7	Genome Wide Meta-Analysis identifies common genetic signatures shared by heart function and Alzheimer's disease. Scientific Reports, 2019, 9, 16665.	3.3	5
8	Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer's disease. Glia, 2018, 66, 637-653.	4.9	159
9	Syntaxin-1/TI-VAMP SNAREs interact with Trk receptors and are required for neurotrophin-dependent outgrowth. Oncotarget, 2018, 9, 35922-35940.	1.8	7
10	Identification and characterization of new isoforms of human fas apoptotic inhibitory molecule (FAIM). PLoS ONE, 2017, 12, e0185327.	2.5	6
11	FAIM-L regulation of XIAP degradation modulates Synaptic Long-Term Depression and Axon Degeneration. Scientific Reports, 2016, 6, 35775.	3.3	17
12	Lifeguard Inhibits Fas Ligand-mediated Endoplasmic Reticulum-Calcium Release Mandatory for Apoptosis in Type II Apoptotic Cells. Journal of Biological Chemistry, 2016, 291, 1221-1234.	3.4	20
13	Fas apoptosis inhibitory molecules: more than deathâ€receptor antagonists in the nervous system. Journal of Neurochemistry, 2016, 139, 11-21.	3.9	28
14	Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells. Cerebral Cortex, 2016, 26, 4282-4298.	2.9	53
15	BRG1/SMARCA4 is essential for neuroblastoma cell viability through modulation of cell death and survival pathways. Oncogene, 2016, 35, 5179-5190.	5.9	65
16	Evaluation of Candidate Genes Related to Neuronal Apoptosis in Late-Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 45, 621-629.	2.6	4
17	FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons. Frontiers in Neuroanatomy, 2015, 9, 60.	1.7	66
18	TNFα sensitizes neuroblastoma cells to FasL-, cisplatin- and etoposide-induced cell death by NF-κB-mediated expression of Fas. Molecular Cancer, 2015, 14, 62.	19.2	18

#	Article	IF	CITATIONS
19	Amyloid-β reduces the expression of neuronal FAIM-L, thereby shifting the inflammatory response mediated by TNFα from neuronal protection to death. Cell Death and Disease, 2015, 6, e1639-e1639.	6.3	35
20	Neurodegeneration and neuroinflammation: two processes, one target. Neural Regeneration Research, 2015, 10, 1581.	3.0	6
21	Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe. Cell Death and Disease, 2014, 5, e1435-e1435.	6.3	86
22	MYCN repression of Lifeguard/FAIM2 enhances neuroblastoma aggressiveness. Cell Death and Disease, 2014, 5, e1401-e1401.	6.3	15
23	Amyloid Beta, TNFα and FAIM-L; Approaching New Therapeutic Strategies for AD. Frontiers in Neurology, 2014, 5, 276.	2.4	5
24	Activation-induced cell death in T lymphocytes from multiple sclerosis patients. Journal of Neuroimmunology, 2014, 272, 51-55.	2.3	8
25	Syntaxin 1 is required for DCC/Netrin-1-dependent chemoattraction of migrating neurons from the lower rhombic lip. European Journal of Neuroscience, 2013, 38, 2338-2338.	2.6	0
26	NF-κB activation fails to protect cells to TNFα-induced apoptosis in the absence of Bcl-xL, but not Mcl-1, Bcl-2 or Bcl-w. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1085-1095.	4.1	10
27	Neurobehavioral characterization of Endonuclease G knockout mice reveals a new putative molecular player in the regulation of anxiety. Experimental Neurology, 2013, 247, 122-129.	4.1	7
28	FAIM-L Is an IAP-Binding Protein That Inhibits XIAP Ubiquitinylation and Protects from Fas-Induced Apoptosis. Journal of Neuroscience, 2013, 33, 19262-19275.	3.6	27
29	A pathway involving HDAC5, cFLIP and caspases regulates expression of the splicing regulator polypyrimidine tract binding protein in the heart. Journal of Cell Science, 2013, 126, 1682-91.	2.0	20
30	Chromatin Collapse during Caspase-dependent Apoptotic Cell Death Requires DNA Fragmentation Factor, 40-kDa Subunit-/Caspase-activated Deoxyribonuclease-mediated 3â€2-OH Single-strand DNA Breaks. Journal of Biological Chemistry, 2013, 288, 9200-9215.	3.4	38
31	TNFα induces survival through the FLIP-L-dependent activation of the MAPK/ERK pathway. Cell Death and Disease, 2013, 4, e493-e493.	6.3	71
32	A role for the tyrosine kinase ACK1 in neurotrophin signaling and neuronal extension and branching. Cell Death and Disease, 2013, 4, e602-e602.	6.3	23
33	X-linked Inhibitor of Apoptosis Protein negatively regulates neuronal differentiation through interaction with cRAF and Trk. Scientific Reports, 2013, 3, 2397.	3.3	15
34	Oxidative Stress and Proinflammatory Cytokines Contribute to Demyelination and Axonal Damage in a Cerebellar Culture Model of Neuroinflammation. PLoS ONE, 2013, 8, e54722.	2.5	195
35	Syntaxin 1 is required for DCC/Netrinâ€1â€dependent chemoattraction of migrating neurons from the lower rhombic lip. European Journal of Neuroscience, 2012, 36, 3152-3164.	2.6	26
36	Translation of Myocyte Enhancer Factor-2 is induced by hypertrophic stimuli in cardiomyocytes through a Calcineurin-dependent pathway. Journal of Molecular and Cellular Cardiology, 2012, 53, 578-587.	1.9	18

#	Article	IF	CITATIONS
37	Apoptotic DNA Degradation into Oligonucleosomal Fragments, but Not Apoptotic Nuclear Morphology, Relies on a Cytosolic Pool of DFF40/CAD Endonuclease. Journal of Biological Chemistry, 2012, 287, 7766-7779.	3.4	28
38	Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12. Cell Death and Disease, 2011, 2, e149-e149.	6.3	137
39	Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature, 2011, 478, 114-118.	27.8	135
40	EndoG Links Bnip3-Induced Mitochondrial Damage and Caspase-Independent DNA Fragmentation in Ischemic Cardiomyocytes. PLoS ONE, 2011, 6, e17998.	2.5	31
41	Ubiquitination of TrkA by Nedd4-2 regulates receptor lysosomal targeting and mediates receptor signaling. Journal of Neurochemistry, 2011, 117, 479-493.	3.9	34
42	A new model to study spinal muscular atrophy: Neurite degeneration and cell death is counteracted by BCL-XL Overexpression in motoneurons. Neurobiology of Disease, 2011, 42, 415-426.	4.4	37
43	The Death Receptor Antagonist FLIP-L Interacts with Trk and Is Necessary for Neurite Outgrowth Induced by Neurotrophins. Journal of Neuroscience, 2010, 30, 6094-6105.	3.6	13
44	Activation of caspase-8 by tumour necrosis factor receptor 1 is necessary for caspase-3 activation and apoptosis in oxygen–glucose deprived cultured cortical cells. Neurobiology of Disease, 2009, 35, 438-447.	4.4	41
45	Polypyrimidine tract binding proteins (PTB) regulate the expression of apoptotic genes and susceptibility to caspase-dependent apoptosis in differentiating cardiomyocytes. Cell Death and Differentiation, 2009, 16, 1460-1468.	11.2	34
46	Specific vulnerability of mouse spinal cord motoneurons to membrane depolarization. Journal of Neurochemistry, 2009, 110, 1842-1854.	3.9	28
47	Tyrâ€701 is a new regulatory site for neurotrophin receptor TrkA trafficking and function. Journal of Neurochemistry, 2008, 104, 124-139.	3.9	9
48	BCL-XL regulates TNF-α-mediated cell death independently of NF-κB, FLIP and IAPs. Cell Research, 2008, 18, 1020-1036.	12.0	37
49	Analysis of Ret knockin mice reveals a critical role for IKKs, but not PI 3-K, in neurotrophic factor-induced survival of sympathetic neurons. Cell Death and Differentiation, 2008, 15, 1510-1521.	11.2	26
50	6â€Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPKâ€mediated, p53â€independent activation of Bax and PUMA. Journal of Neurochemistry, 2008, 104, 1599-1612.	3.9	121
51	Neuroprotection by Neurotrophic Factors and Membrane Depolarization Is Regulated by Calmodulin Kinase IV. Journal of Biological Chemistry, 2008, 283, 4133-4144.	3.4	12
52	A TrkB/EphrinA Interaction Controls Retinal Axon Branching and Synaptogenesis. Journal of Neuroscience, 2008, 28, 12700-12712.	3.6	142
53	Signalling by neurotrophins and hepatocyte growth factor regulates axon morphogenesis by differential I2-catenin phosphorylation. Journal of Cell Science, 2008, 121, 2718-2730.	2.0	49
54	An alternative view of apoptosis in heart development and disease. Cardiovascular Research, 2007, 77, 448-451.	3.8	17

#	Article	IF	CITATIONS
55	The Long Form of Fas Apoptotic Inhibitory Molecule Is Expressed Specifically in Neurons and Protects Them against Death Receptor-Triggered Apoptosis. Journal of Neuroscience, 2007, 27, 11228-11241.	3.6	73
56	Reelin Induces the Detachment of Postnatal Subventricular Zone Cells and the Expression of the Egr-1 through Erk1/2 Activation. Cerebral Cortex, 2007, 17, 294-303.	2.9	61
57	Developmental silencing and independency from E2F of apoptotic gene expression in postmitotic tissues. FEBS Letters, 2007, 581, 5781-5786.	2.8	8
58	Reactive Oxygen Species and p38 Mitogen-Activated Protein Kinase Activate Bax to Induce Mitochondrial Cytochrome <i>c</i> Release and Apoptosis in Response to Malonate. Molecular Pharmacology, 2007, 71, 736-743.	2.3	130
59	Differential, ageâ€dependent MEKâ€ERK and PI3Kâ€Akt activation by insulin acting as a survival factor during embryonic retinal development. Developmental Neurobiology, 2007, 67, 1777-1788.	3.0	32
60	Met signals hepatocyte survival by preventing Fas-triggered FLIP degradation in a PI3k-Akt-dependent manner. Hepatology, 2007, 45, 1210-1217.	7.3	82
61	Lifeguard/neuronal membrane protein 35 regulates Fas ligand-mediated apoptosis in neurons via microdomain recruitment. Journal of Neurochemistry, 2007, 103, 070717084306001-???.	3.9	67
62	Switch from Caspase-dependent to Caspase-independent Death during Heart Development. Journal of Biological Chemistry, 2006, 281, 22943-22952.	3.4	82
63	Origin and evolution of the Trk family of neurotrophic receptors. Molecular and Cellular Neurosciences, 2006, 31, 179-192.	2.2	47
64	Antiproliferative effect of STI571 on cultured human cutaneous melanoma-derived cell lines. Melanoma Research, 2006, 16, 127-135.	1.2	14
65	Proteasome Inhibitors Induce Death but Activate NF-κB on Endometrial Carcinoma Cell Lines and Primary Culture Explants. Journal of Biological Chemistry, 2006, 281, 22118-22130.	3.4	94
66	Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway. British Journal of Pharmacology, 2005, 144, 528-537.	5.4	58
67	FLIP is frequently expressed in endometrial carcinoma and has a role in resistance to TRAIL-induced apoptosis. Laboratory Investigation, 2005, 85, 885-894.	3.7	59
68	The single AmphiTrk receptor highlights increased complexity of neurotrophin signalling in vertebrates and suggests an early role in developing sensory neuroepidermal cells. Development (Cambridge), 2005, 132, 2191-2202.	2.5	63
69	The Contribution of Apoptosis-inducing Factor, Caspase-activated DNase, and Inhibitor of Caspase-activated DNase to the Nuclear Phenotype and DNA Degradation during Apoptosis. Journal of Biological Chemistry, 2005, 280, 35670-35683.	3.4	80
70	Outlining the nascent nervous system of Branchiostoma floridae (amphioxus) by the pan-neural marker AmphiElav. Brain Research Bulletin, 2005, 66, 518-521.	3.0	21
71	Trk is a calmodulinâ€binding protein: implications for receptor processing. Journal of Neurochemistry, 2004, 88, 422-433.	3.9	16
72	Glial Cell Line-derived Neurotrophic Factor Increases Intracellular Calcium Concentration. Journal of Biological Chemistry, 2004, 279, 6132-6142.	3.4	76

#	Article	IF	CITATIONS
73	Bcl-2 Is a Key Factor for Cardiac Fibroblast Resistance to Programmed Cell Death. Journal of Biological Chemistry, 2004, 279, 34882-34889.	3.4	77
74	Basic Helix-Loop-Helix Proteins Bind to <i>TrkB</i> and <i>p21^{Cip1}</i> Promoters Linking Differentiation and Cell Cycle Arrest in Neuroblastoma Cells. Molecular and Cellular Biology, 2004, 24, 2662-2672.	2.3	79
75	The death receptor antagonist FAIM promotes neurite outgrowth by a mechanism that depends on ERK and NF-κB signaling. Journal of Cell Biology, 2004, 167, 479-492.	5.2	75
76	Characterization of splice variants of human caspase-activated DNase with CIDE-N structure and function. FEBS Letters, 2004, 566, 234-240.	2.8	10
77	Differential involvement of phosphatidylinositol 3-kinase and p42/p44 mitogen activated protein kinase pathways in brain-derived neurotrophic factor-induced trophic effects on cultured striatal neurons. Molecular and Cellular Neurosciences, 2004, 25, 460-468.	2.2	31
78	Characterization of splice variants of human caspase-activated DNase with CIDE-N structure and function. FEBS Letters, 2004, 566, 234-240.	2.8	0
79	Lack of Apaf-1 expression confers resistance to cytochrome c-driven apoptosis in cardiomyocytes. Cell Death and Differentiation, 2003, 10, 977-986.	11.2	64
80	μ-opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH-SY5Y cells and cortical neurons via phosphatidylinositol 3-kinase. Neuropharmacology, 2003, 44, 482-492.	4.1	70
81	The prevention of the staurosporine-induced apoptosis by Bcl-XL, but not by Bcl-2 or caspase inhibitors, allows the extensive differentiation of human neuroblastoma cells. Journal of Neurochemistry, 2002, 80, 126-139.	3.9	60
82	Activation of Phosphatidylinositol 3-Kinase, but Not Extracellular-Regulated Kinases, Is Necessary to Mediate Brain-Derived Neurotrophic Factor-Induced Motoneuron Survival. Journal of Neurochemistry, 2002, 73, 521-531.	3.9	111
83	Extracellular-Regulated Kinases and Phosphatidylinositol 3-Kinase Are Involved in Brain-Derived Neurotrophic Factor-Mediated Survival and neuritogenesis of the Neuroblastoma Cell Line SH-SY5Y. Journal of Neurochemistry, 2002, 73, 1409-1421.	3.9	230
84	Isolation of AmphiCASP-3/7, an ancestral caspase from amphioxus (Branchiostoma floridae). Evolutionary considerations for vertebrate caspases. Cell Death and Differentiation, 2002, 9, 1078-1089.	11.2	39
85	Cytokines Promote Motoneuron Survival through the Janus Kinase-Dependent Activation of the Phosphatidylinositol 3-Kinase Pathway. Molecular and Cellular Neurosciences, 2001, 18, 619-631.	2.2	86
86	Neuronal survival induced by neurotrophins requires calmodulin. Journal of Cell Biology, 2001, 154, 585-598.	5.2	53
87	The Absence of Oligonucleosomal DNA Fragmentation during Apoptosis of IMR-5 Neuroblastoma Cells. Journal of Biological Chemistry, 2001, 276, 22323-22331.	3.4	63
88	c-Src Is Required for Glial Cell Line-Derived Neurotrophic Factor (GDNF) Family Ligand-Mediated Neuronal Survival via a Phosphatidylinositol-3 Kinase (PI-3K)-Dependent Pathway. Journal of Neuroscience, 2001, 21, 1464-1472.	3.6	143
89	Combined use of the green and yellow fluorescent proteins and fluorescence-activated cell sorting to select populations of transiently transfected PC12 cells. Journal of Neuroscience Methods, 2000, 100, 63-69.	2.5	11
90	PC12 Cells Have Caveolae That Contain TrkA. Journal of Biological Chemistry, 2000, 275, 37846-37852.	3.4	83

#	Article	IF	CITATIONS
91	Nerve Growth Factor Activation of the Extracellular Signal-Regulated Kinase Pathway Is Modulated by Ca 2+ and Calmodulin. Molecular and Cellular Biology, 2000, 20, 1931-1946.	2.3	47
92	Sequential Treatment of SHâ€SY5Y Cells with Retinoic Acid and Brainâ€Derived Neurotrophic Factor Gives Rise to Fully Differentiated, Neurotrophic Factorâ€Dependent, Human Neuronâ€Like Cells. Journal of Neurochemistry, 2000, 75, 991-1003.	3.9	649
93	Receptors of the Glial Cell Line-Derived Neurotrophic Factor Family of Neurotrophic Factors Signal Cell Survival through the Phosphatidylinositol 3-Kinase Pathway in Spinal Cord Motoneurons. Journal of Neuroscience, 1999, 19, 9160-9169.	3.6	153
94	Calcium Influx Activates Extracellular-regulated Kinase/Mitogen-activated Protein Kinase Pathway through a Calmodulin-sensitive Mechanism in PC12 Cells. Journal of Biological Chemistry, 1999, 274, 75-85.	3.4	87
95	Binding patterns of lectins with GalNAc specificity in the mouse dorsal root ganglia and spinal cord. Journal of Neurocytology, 1999, 28, 75-84.	1.5	3
96	Serum Deprivation and Protein Synthesis Inhibition Induce Two Different Apoptotic Processes in N18 Neuroblastoma Cells. Experimental Cell Research, 1998, 238, 422-429.	2.6	27
97	Development of Survival Responsiveness to Brain-Derived Neurotrophic Factor, Neurotrophin 3 and Neurotrophin 4/5, But Not to Nerve Growth Factor, in Cultured Motoneurons from Chick Embryo Spinal Cord. Journal of Neuroscience, 1998, 18, 7903-7911.	3.6	58
98	Calmodulin Is Involved in Membrane Depolarization-Mediated Survival of Motoneurons by Phosphatidylinositol-3 Kinase- and MAPK-Independent Pathways. Journal of Neuroscience, 1998, 18, 1230-1239.	3.6	64
99	Calmodulin Modulates Mitogenâ€Activated Protein Kinase Activation in Response to Membrane Depolarization in PC12 Cells. Journal of Neurochemistry, 1998, 70, 2554-2564.	3.9	28
100	Characterization of the Cell Death Process Induced by Staurosporine in Human Neuroblastoma Cell Lines. Neuropharmacology, 1997, 36, 811-821.	4.1	81
101	Cytosine arabinoside is neurotoxic to chick embryo spinal cord motoneurons in culture. Neuroscience Letters, 1997, 223, 141-144.	2.1	18
102	Molecular mechanisms controlling apoptotic cell death in the nervous system. Methods and Findings in Experimental and Clinical Pharmacology, 1997, 19 Suppl A, 59-62.	0.8	0
103	The carbohydrate N-acetylglucosamine is involved in the guidance of neurites from chick ciliary ganglion neurons through the extracellular matrix of rat skeletal muscle fiber. Neuroscience Letters, 1996, 207, 81-84.	2.1	6
104	Nerve terminal sprouting in botulinum type-A treated mouse levator auris longus muscle. Neuromuscular Disorders, 1996, 6, 177-185.	0.6	74
105	S-laminin and N-acetylgalactosamine located at the synaptic basal lamina of skeletal muscle are involved in synaptic recognition by growing neurites. Journal of Neurocytology, 1995, 24, 903-915.	1.5	6
106	Skeletal muscle-derived trophic factors prevent motoneurons from entering an active cell death program in vitro. Journal of Neuroscience, 1994, 14, 2674-2686.	3.6	56
107	Effects of stonefish (Synanceia trachynis) venom on murine and frog neuromuscular junctions. Toxicon, 1993, 31, 307-317.	1.6	43
108	Sprouting of mammalian motor nerve terminals induced by in vivo injection of botulinum type-D toxin and the functional recovery of paralysed neuromuscular junctions. Neuroscience Letters, 1993, 153, 61-64.	2.1	44

#	Article	IF	CITATIONS
109	Tetrodotoxin-Sensitive Ciguatoxin Effects on Quantal Release, Synaptic Vesicle Depletion, and Calcium Mobilization. Annals of the New York Academy of Sciences, 1991, 635, 485-488.	3.8	14
110	Terminal sprouting in mouse neuromuscular junctions poisoned with botulinum type a toxin: Morphological and electrophysiological features. Neuroscience, 1990, 37, 799-808.	2.3	136
111	Ciguatoxin enhances quantal transmitter release from frog motor nerve terminals. British Journal of Pharmacology, 1990, 99, 695-700.	5.4	69
112	Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions. Journal De Physiologie, 1990, 84, 152-66.	0.2	19
113	Absence of histochemical immunoreactivity to calcitonin gene-related peptide (CGRP) in spinal cord motoneurons from (+)-tubocurarine-treated chick embryos. Neuroscience Letters, 1989, 105, 1-6.	2.1	18
114	Synaptic localization of a 66-kDa soluble protein from skeletal muscle: Evidence for its developmental and neural regulation. Experimental Neurology, 1989, 105, 211-218.	4.1	0
115	Phylogenetic polymorphism on lectin binding to junctional and non-junctional basal lamina at the vertebrate neuromuscular junction. Histochemistry, 1987, 87, 301-307.	1.9	12
116	Receptors to agglutinin fromDolichus biflorus (DBA) at the synaptic basal lamina of rat neuromuscular junction. Cell and Tissue Research, 1987, 248, 111-117.	2.9	14