Simone Di Franco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5371295/publications.pdf Version: 2024-02-01

SIMONE DI EPANCO

#	Article	IF	CITATIONS
1	Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Molecular Cancer, 2019, 18, 70.	19.2	361
2	Tumor and its microenvironment: A synergistic interplay. Seminars in Cancer Biology, 2013, 23, 522-532.	9.6	344
3	Human NK Cells Selective Targeting of Colon Cancer–Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules. Journal of Immunology, 2013, 190, 2381-2390.	0.8	224
4	Lipid Droplets: A New Player in Colorectal Cancer Stem Cells Unveiled by Spectroscopic Imaging. Stem Cells, 2015, 33, 35-44.	3.2	185
5	CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells. Gut, 2018, 67, 903-917.	12.1	64
6	Role of Type I and II Interferons in Colorectal Cancer and Melanoma. Frontiers in Immunology, 2017, 8, 878.	4.8	60
7	Betulinic acid induces a novel cell death pathway that depends on cardiolipin modification. Oncogene, 2016, 35, 427-437.	5.9	57
8	Proliferation State and Polo-Like Kinase1 Dependence of Tumorigenic Colon Cancer Cells. Stem Cells, 2012, 30, 1819-1830.	3.2	53
9	IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Research, 2017, 77, 3268-3279.	0.9	49
10	PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells. Gut, 2022, 71, 119-128.	12.1	46
11	Combined platelet-rich plasma and lipofilling treatment provides great improvement in facial skin-induced lesion regeneration for scleroderma patients. Stem Cell Research and Therapy, 2017, 8, 236.	5.5	39
12	Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment. Oncotarget, 2016, 7, 65504-65513.	1.8	38
13	Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery. Nature Communications, 2021, 12, 5006.	12.8	38
14	Betulinic Acid Kills Colon Cancer Stem Cells. Current Stem Cell Research and Therapy, 2016, 11, 427-433.	1.3	36
15	Magnetic Nanoparticle-Based Hyperthermia Mediates Drug Delivery and Impairs the Tumorigenic Capacity of Quiescent Colorectal Cancer Stem Cells. ACS Applied Materials & Interfaces, 2021, 13, 15959-15972.	8.0	35
16	CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin. IScience, 2021, 24, 102664.	4.1	31
17	CD133 as a target for colon cancer. Expert Opinion on Therapeutic Targets, 2012, 16, 259-267.	3.4	30
18	DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics, 2019, 11, 587-604.	2.1	29

SIMONE DI FRANCO

#	Article	IF	CITATIONS
19	ROS and Lipid Droplet accumulation induced by high glucose exposure in healthy colon and Colorectal Cancer Stem Cells. Genes and Diseases, 2020, 7, 620-635.	3.4	26
20	ΔNp63 drives metastasis in breast cancer cells <i>via</i> PI3K/CD44v6 axis. Oncotarget, 2016, 7, 54157-54173.	1.8	25
21	Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene, 2020, 39, 987-1003.	5.9	24
22	Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment. Frontiers in Oncology, 2021, 11, 702642.	2.8	21
23	Nobiletin and Xanthohumol Sensitize Colorectal Cancer Stem Cells to Standard Chemotherapy. Cancers, 2021, 13, 3927.	3.7	20
24	Colorectal cancer defeating? Challenge accepted!. Molecular Aspects of Medicine, 2014, 39, 61-81.	6.4	17
25	Metabolic Escape Routes of Cancer Stem Cells and Therapeutic Opportunities. Cancers, 2020, 12, 1436.	3.7	15
26	Pharmacological targeting of the novel \hat{l}^2 -catenin chromatin-associated kinase p38 \hat{l} ± in colorectal cancer stem cell tumorspheres and organoids. Cell Death and Disease, 2021, 12, 316.	6.3	11
27	p63 role in breast cancer. Aging, 2016, 8, 2256-2257.	3.1	10
28	Colon Cancer Stem Cells: Bench-to-Bedside—New Therapeutical Approaches in Clinical Oncology for Disease Breakdown. Cancers, 2011, 3, 1957-1974.	3.7	9
29	BCL-XL inhibition induces an FGFR4-mediated rescue response in colorectal cancer. Cell Reports, 2022, 38, 110374.	6.4	9
30	Effective targeting of breast cancer stem cells by combined inhibition of Sam68 and Rad51. Oncogene, 2022, 41, 2196-2209.	5.9	8
31	A perspective analysis: microRNAs, glucose metabolism, and drug resistance in colon cancer stem cells. Cancer Gene Therapy, 2021, , .	4.6	6
32	Dual Inhibition of Myc Transcription and PI3K Activity Effectively Targets Colorectal Cancer Stem Cells. Cancers, 2022, 14, 673.	3.7	4
33	Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy. Biomolecules, 2022, 12, 702.	4.0	3
34	Innovative Therapeutic Strategies Targeting Colorectal Cancer Stem Cells. Current Colorectal Cancer Reports, 2017, 13, 91-100.	0.5	1
35	Adipose stromal cells promote the transition of colorectal cancer cells toward a mesenchymal-like phenotype. Molecular and Cellular Oncology, 2021, 8, 1986343.	0.7	1
36	FACS-based protocol to assess cytotoxicity and clonogenic potential of colorectal cancer stem cells using a Wnt/l²-catenin signaling pathway reporter. STAR Protocols, 2021, 2, 100880.	1.2	1

#	Article	IF	CITATIONS
37	Abstract LB-143: DNp63 governs metastatic outgrowth of breast cancer stem cells. , 2015, , .		0
38	Abstract 3311: Autocrine and paracrine IL-4 maintains breast cancer stem cells traits via RAS/MAPK/DUSP pathway. , 2016, , .		0