Andrew Mark James Shapiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5370265/publications.pdf

Version: 2024-02-01

165 papers 19,778 citations

59 h-index 138 g-index

168 all docs 168
docs citations

168 times ranked 9757 citing authors

#	Article	IF	CITATIONS
1	Islet Transplantation in Seven Patients with Type 1 Diabetes Mellitus Using a Glucocorticoid-Free Immunosuppressive Regimen. New England Journal of Medicine, 2000, 343, 230-238.	27.0	4,772
2	International Trial of the Edmonton Protocol for Islet Transplantation. New England Journal of Medicine, 2006, 355, 1318-1330.	27.0	1,754
3	Five-Year Follow-Up After Clinical Islet Transplantation. Diabetes, 2005, 54, 2060-2069.	0.6	1,489
4	Successful Islet Transplantation: Continued Insulin Reserve Provides Long-Term Glycemic Control. Diabetes, 2002, 51, 2148-2157.	0.6	701
5	Improvement in Outcomes of Clinical Islet Transplantation: 1999–2010. Diabetes Care, 2012, 35, 1436-1445.	8.6	665
6	Cell encapsulation: Promise and progress. Nature Medicine, 2003, 9, 104-107.	30.7	546
7	Clinical pancreatic islet transplantation. Nature Reviews Endocrinology, 2017, 13, 268-277.	9.6	525
8	Phase 3 Trial of Transplantation of Human Islets in Type 1 Diabetes Complicated by Severe Hypoglycemia. Diabetes Care, 2016, 39, 1230-1240.	8.6	498
9	Assessment of the Severity of Hypoglycemia and Glycemic Lability in Type 1 Diabetic Subjects Undergoing Islet Transplantation. Diabetes, 2004, 53, 955-962.	0.6	315
10	A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nature Biotechnology, 2015, 33, 518-523.	17.5	293
11	Sirolimus-based immunosuppression is associated with increased survival after liver transplantation for hepatocellular carcinoma. Hepatology, 2010, 51, 1237-1243.	7.3	281
12	VARIABLES IN ORGAN DONORS THAT AFFECT THE RECOVERY OF HUMAN ISLETS OF LANGERHANS1. Transplantation, 1996, 61, 1047-1053.	1.0	280
13	Sirolimus-based immunosuppression for liver transplantation in the presence of extended criteria for hepatocellular carcinoma. Liver Transplantation, 2004, 10, 1301-1311.	2.4	241
14	Insulin independence after living-donor distal pancreatectomy and islet allotransplantation. Lancet, The, 2005, 365, 1642-1644.	13.7	216
15	Intraductal Collagenase Delivery into the Human Pancreas Using Syringe Loading or Controlled Perfusion. Cell Transplantation, 1999, 8, 285-292.	2.5	195
16	Update on Islet Transplantation. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007823-a007823.	6.2	179
17	Edmonton's islet success has indeed been replicated elsewhere. Lancet, The, 2003, 362, 1242.	13.7	158
18	Prevalence of Hepatic Steatosis After Islet Transplantation and Its Relation to Graft Function. Diabetes, 2004, 53, 1311-1317.	0.6	148

#	Article	IF	CITATIONS
19	Factors Influencing the Loss of î²-Cell Mass in Islet Transplantation. Cell Transplantation, 2007, 16, 1-8.	2.5	144
20	National Institutes of Health–Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities. Diabetes, 2016, 65, 3418-3428.	0.6	143
21	Prevention of Bleeding After Islet Transplantation: Lessons Learned from a Multivariate Analysis of 132 Cases at a Single Institution. American Journal of Transplantation, 2005, 5, 2992-2998.	4.7	137
22	Portal venous pressure changes after sequential clinical islet transplantation. Transplantation, 2002, 74, 913-915.	1.0	131
23	Interventional Strategies to Prevent Â-Cell Apoptosis in Islet Transplantation. Diabetes, 2006, 55, 1907-1914.	0.6	131
24	The journey of islet cell transplantation and future development. Islets, 2018, 10, 80-94.	1.8	126
25	Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Reports Medicine, 2021, 2, 100466.	6.5	126
26	State of the Art of Clinical Islet Transplantation and Novel Protocols of Immunosuppression. Current Diabetes Reports, 2011, 11, 345-354.	4.2	124
27	Revascularization of Transplanted Pancreatic Islets and Role of the Transplantation Site. Clinical and Developmental Immunology, 2013, 2013, 1-13.	3.3	124
28	Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2014, 7, 211.	2.4	123
29	Strategic Opportunities in Clinical Islet Transplantation. Transplantation, 2005, 79, 1304-1307.	1.0	121
30	Percutaneous Transhepatic Pancreatic Islet Cell Transplantation in Type 1 Diabetes Mellitus: Radiologic Aspects. Radiology, 2003, 229, 165-170.	7.3	120
31	Current status of pancreatic islet transplantation. Clinical Science, 2006, 110, 611-625.	4.3	118
32	The Portal Immunosuppressive Storm. Therapeutic Drug Monitoring, 2005, 27, 35-37.	2.0	117
33	Human islet transplantation from pancreases with prolonged cold ischemia using additional preservation by the two-layer (UW solution/perfluorochemical) cold-storage method. Transplantation, 2002, 74, 1687-1691.	1.0	113
34	Human Mesenchymal Stem Cells Protect Human Islets from Pro-Inflammatory Cytokines. PLoS ONE, 2012, 7, e38189.	2.5	112
35	Intra-abdominal adhesions: Cellular mechanisms and strategies for prevention. International Journal of Surgery, 2011, 9, 589-594.	2.7	110
36	Risk factors for islet loss during culture prior to transplantation. Transplant International, 2008, 21, 1029-35.	1.6	109

#	Article	IF	CITATIONS
37	Risks and side effects of islet transplantation. Current Diabetes Reports, 2004, 4, 304-309.	4.2	108
38	Insulin-Heparin Infusions Peritransplant Substantially Improve Single-Donor Clinical Islet Transplant Success. Transplantation, 2010, 89, 465-471.	1.0	108
39	Ferroptosis-inducing agents compromise in vitro human islet viability and function. Cell Death and Disease, 2018, 9, 595.	6.3	106
40	XIAP Overexpression in Human Islets Prevents Early Posttransplant Apoptosis and Reduces the Islet Mass Needed to Treat Diabetes. Diabetes, 2005, 54, 2541-2548.	0.6	102
41	Diabetes Is Reversed in a Murine Model by Marginal Mass Syngeneic Islet Transplantation Using a Subcutaneous Cell Pouch Device. Transplantation, 2015, 99, 2294-2300.	1.0	97
42	Islet Transplantation in Type 1 Diabetes: Ongoing Challenges, Refined Procedures, and Long-Term Outcome. Review of Diabetic Studies, 2012, 9, 385-406.	1.3	92
43	Proteinuria Developing After Clinical Islet Transplantation Resolves with Sirolimus Withdrawal and Increased Tacrolimus Dosing. American Journal of Transplantation, 2005, 5, 2318-2323.	4.7	90
44	Technical aspects of islet preparation and transplantation. Transplant International, 2003, 16, 613-632.	1.6	89
45	Strategies toward single-donor islets of Langerhans transplantation. Current Opinion in Organ Transplantation, 2011, 16, 627-631.	1.6	84
46	Current indications for pancreas or islet transplant. Diabetes, Obesity and Metabolism, 2006, 8, 1-7.	4.4	79
47	Histologic Graft Assessment After Clinical Islet Transplantation. Transplantation, 2009, 88, 1286-1293.	1.0	74
48	Clinical islet transplant: current and future directions towards tolerance. Immunological Reviews, 2003, 196, 219-236.	6.0	73
49	Liraglutide, a long-acting human glucagon-like peptide 1 analogue, improves human islet survival in culture. Transplant International, 2010, 23, 259-265.	1.6	71
50	Multiple Combination Therapies Involving Blockade of ICOS/B7RP-1 Costimulation Facilitate Long-Term Islet Allograft Survival. American Journal of Transplantation, 2004, 4, 526-536.	4.7	68
51	Transplantation of Human Pancreatic Endoderm Cells Reverses Diabetes Post Transplantation in a Prevascularized Subcutaneous Site. Stem Cell Reports, 2017, 8, 1689-1700.	4.8	68
52	Coinhibitory T-Cell Signaling in Islet Allograft Rejection and Tolerance. Cell Transplantation, 2006, 15, 105-119.	2.5	65
53	Pancreatic islet transplantation in type 1 diabetes: 20-year experience from a single-centre cohort in Canada. Lancet Diabetes and Endocrinology, the, 2022, 10, 519-532.	11.4	65
54	Caspase Inhibitor Therapy Enhances Marginal Mass Islet Graft Survival and Preserves Long-Term Function in Islet Transplantation. Diabetes, 2007, 56, 1289-1298.	0.6	64

#	Article	IF	CITATIONS
55	Factors Influencing the Collagenase Digestion Phase of Human Islet Isolation. Transplantation, 2007, 83, 7-12.	1.0	64
56	Transient Cold Storage Prior to Normothermic Liver Perfusion May Facilitate Adoption of a Novel Technology. Liver Transplantation, 2019, 25, 1503-1513.	2.4	63
57	Enhancing the Success of Human Islet Isolation Through Optimization and Characterization of Pancreas Dissociation Enzyme. American Journal of Transplantation, 2007, 7, 1233-1241.	4.7	62
58	Changes in liver enzymes after clinical islet transplantation1. Transplantation, 2003, 76, 1280-1284.	1.0	60
59	Unraveling the Secrets of Single Donor Success in Islet Transplantation. American Journal of Transplantation, 2004, 4, 295-298.	4.7	60
60	Clinical islet transplantation: is the future finally now?. Current Opinion in Organ Transplantation, 2018, 23, 428-439.	1.6	60
61	Preservation of the human pancreas before islet isolation using a two-layer (UW) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10	Tf 50 502 Td
62	Current Status of Clinical Islet Cell Transplantation. , 2006, 333, 47-104.		59
63	Islet Transplantation in Patients with Diabetes Mellitus. BioDrugs, 2004, 18, 315-328.	4.6	58
64	Islet cell transplantation. Lancet, The, 2001, 358, S21.	13.7	56
65	Current status of clinical islet transplantation. World Journal of Transplantation, 2013, 3, 48.	1.6	56
66	The Caspase Selective Inhibitor EP1013 Augments Human Islet Graft Function and Longevity in Marginal Mass Islet Transplantation in Mice. Diabetes, 2008, 57, 1556-1566.	0.6	55
67	Single-Donor Islet Transplantation and Long-term Insulin Independence in Select Patients With Type 1 Diabetes Mellitus. Transplantation, 2014, 98, 1007-1012.	1.0	55
68	Role of Imaging in Clinical Islet Transplantation. Radiographics, 2010, 30, 353-366.	3.3	54
69	A Backâ€toâ€Base Experience of Human Normothermic Ex Situ Liver Perfusion: Does the Chill Kill?. Liver Transplantation, 2019, 25, 848-858.	2.4	54
70	XIAP Overexpression in Islet beta-Cells Enhances Engraftment and Minimizes Hypoxia-Reperfusion Injury. American Journal of Transplantation, 2005, 5, 1297-1305.	4.7	51
71	Sirolimus-Induced Ulceration of the Small Bowel in Islet Transplant Recipients: Report of Two Cases. American Journal of Transplantation, 2005, 5, 2799-2804.	4.7	50
72	Quality of Life After Islet Transplant: Impact of the Number of Islet Infusions and Metabolic Outcome. Transplantation, 2007, 84, 664-666.	1.0	50

#	Article	IF	Citations
73	Comparison of Human Islet Isolation Outcomes Using a New Mammalian Tissue-Free Enzyme Versus Collagenase NB-1. Transplantation, 2010, 90, 255-259.	1.0	50
74	Are stem cells a cure for diabetes?. Clinical Science, 2010, 118, 87-97.	4.3	49
75	Improved islet recovery and efficacy through co-culture and co-transplantation of islets with human adipose-derived mesenchymal stem cells. PLoS ONE, 2018, 13, e0206449.	2.5	49
76	Effect of different induction strategies on effector, regulatory and memory lymphocyte sub-populations in clinical islet transplantation. Transplant International, 2009, 22, 182-191.	1.6	48
77	A comparison of islet autotransplantation with allotransplantation and factors elevating acute portal pressure in clinical islet transplantation. Journal of Hepato-Biliary-Pancreatic Sciences, 2012, 19, 281-288.	2.6	44
78	The Impact of Sirolimus on hepatitis C Recurrence after Liver Transplantation. Canadian Journal of Gastroenterology & Hepatology, 2011, 25, 28-34.	1.7	42
79	A Multicenter Study: North American Islet Donor Score in Donor Pancreas Selection for Human Islet Isolation for Transplantation. Cell Transplantation, 2016, 25, 1515-1523.	2.5	42
80	A Targeted RNAi Screen Identifies Endocytic Trafficking Factors That Control GLP-1 Receptor Signaling in Pancreatic \hat{l}^2 -Cells. Diabetes, 2018, 67, 385-399.	0.6	41
81	Technical aspects of islet preparation and transplantation. Transplant International, 2003, 16, 613-632.	1.6	41
82	Surgical aspects of human islet isolation. Islets, 2010, 2, 265-273.	1.8	40
83	Beta Cell Death by Cell-free DNA and Outcome After Clinical Islet Transplantation. Transplantation, 2018, 102, 978-985.	1.0	40
84	Porcine Marginal Mass Islet Autografts Resist Metabolic Failure Over Time and Are Enhanced by Early Treatment with Liraglutide. Endocrinology, 2009, 150, 2145-2152.	2.8	36
85	Harnessing the Foreign Body Reaction in Marginal Mass Device-less Subcutaneous Islet Transplantation in Mice. Transplantation, 2016, 100, 1474-1479.	1.0	36
86	The Use of an Approved Biodegradable Polymer Scaffold as a Solid Support System for Improvement of Islet Engraftment. Artificial Organs, 2008, 32, 990-993.	1.9	35
87	The caspase inhibitor IDN-6556 (PF3491390) improves marginal mass engraftment after islet transplantation in mice. Surgery, 2011, 150, 48-55.	1.9	35
88	Research Productivity of Residents and Surgeons With Formal Research Training. Journal of Surgical Education, 2014, 71, 865-870.	2.5	35
89	Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation. PLoS ONE, 2016, 11, e0156053.	2.5	34
90	Pancreas Divisum: A Study of the Cadaveric Donor Pancreas for Islet Isolation. Pancreas, 2005, 30, 325-327.	1.1	32

#	Article	IF	CITATIONS
91	High prevalence of ovarian cysts in premenopausal women receiving sirolimus and tacrolimus after clinical islet transplantation. Transplant International, 2009, 22, 622-625.	1.6	31
92	Human Induced Pluripotent Stem Cells in the Curative Treatment of Diabetes and Potential Impediments Ahead. Advances in Experimental Medicine and Biology, 2018, 1144, 25-35.	1.6	30
93	Islet cell transplantation. Seminars in Pediatric Surgery, 2014, 23, 83-90.	1.1	29
94	BTLA targeting modulates lymphocyte phenotype, function, and numbers and attenuates disease in nonobese diabetic mice. Journal of Leukocyte Biology, 2009, 86, 41-51.	3.3	28
95	Clinical islet isolation and transplantation outcomes with deceased cardiac death donors are similar to neurological determination of death donors. Transplant International, 2016, 29, 34-40.	1.6	28
96	Defining optimal immunosuppression for islet transplantation based on reduced diabetogenicity in canine islet autografts. Transplantation, 2002, 74, 1522-1528.	1.0	27
97	Microbial Contamination of Clinical Islet Transplant Preparations Is Associated with Very Low Risk of Infection. Diabetes Technology and Therapeutics, 2013, 15, 323-327.	4.4	27
98	Posttransplant Characterization of Long-term Functional hESC-Derived Pancreatic Endoderm Grafts. Diabetes, 2019, 68, 953-962.	0.6	27
99	Glucose-dependent partitioning of arginine to the urea cycle protects \hat{l}^2 -cells from inflammation. Nature Metabolism, 2020, 2, 432-446.	11.9	27
100	Negative and Positive Co-Signaling With Anti-BTLA (PJ196) and CTLA4lg Prolongs Islet Allograft Survival. Transplantation, 2007, 84, 1368-1372.	1.0	26
101	Cost-utility analysis of normothermic machine perfusion compared to static cold storage in liver transplantation in the Canadian setting. American Journal of Transplantation, 2022, 22, 541-551.	4.7	26
102	Biologic Agents in Islet Transplantation. Current Diabetes Reports, 2013, 13, 713-722.	4.2	25
103	Long-term function and optimization of mouse and human islet transplantation in the subcutaneous device-less site. Islets, 2016, 8, 186-194.	1.8	25
104	Nonsimultaneous Administration of Pancreas Dissociation Enzymes During Islet Isolation. Transplantation, 2009, 87, 1700-1705.	1.0	24
105	Reparixin, a CXCR1/2 inhibitor in islet allotransplantation. Islets, 2016, 8, 115-124.	1.8	23
106	Antiaging Glycopeptide Protects Human Islets Against Tacrolimus-Related Injury and Facilitates Engraftment in Mice. Diabetes, 2016, 65, 451-462.	0.6	23
107	Oxygen Perfusion (Persufflation) of Human Pancreata Enhances Insulin Secretion and Attenuates Islet Proinflammatory Signaling. Transplantation, 2019, 103, 160-167.	1.0	23
108	Inducible Pluripotent Stem Cells as a Potential Cure for Diabetes. Cells, 2021, 10, 278.	4.1	23

#	Article	IF	Citations
109	Progress in Translational Regulatory T Cell Therapies for Type 1 Diabetes and Islet Transplantation. Endocrine Reviews, 2021, 42, 198-218.	20.1	22
110	Clinical islet transplantation: Current progress and new frontiers. Journal of Hepato-Biliary-Pancreatic Sciences, 2021, 28, 243-254.	2.6	22
111	Glucose metabolism and pyruvate carboxylase enhance glutathione synthesis and restrict oxidative stress in pancreatic islets. Cell Reports, 2021, 37, 110037.	6.4	21
112	The Impact of Preoperative Endoscopic Ultrasound on the Surgical Management of Pancreatic Neuroendocrine Tumours. Canadian Journal of Gastroenterology & Hepatology, 2008, 22, 817-820.	1.7	20
113	Glutathione Ethyl Ester Supplementation during Pancreatic Islet Isolation Improves Viability and Transplant Outcomes in a Murine Marginal Islet Mass Model. PLoS ONE, 2013, 8, e55288.	2.5	20
114	Engraftment Site and Effectiveness of the Pan-Caspase Inhibitor F573 to Improve Engraftment in Mouse and Human Islet Transplantation in Mice. Transplantation, 2017, 101, 2321-2329.	1.0	20
115	Downstaging prior to liver transplantation for hepatocellular carcinoma: advisable but at the price of an increased risk of cancer recurrence - a retrospective study. Transplant International, 2019, 32, 163-172.	1.6	20
116	Caspase Inhibitor Therapy Synergizes With Costimulation Blockade to Promote Indefinite Islet Allograft Survival. Diabetes, 2010, 59, 1469-1477.	0.6	19
117	Bioengineered stem cells as an alternative for islet cell transplantation. World Journal of Transplantation, 2015, 5, 1.	1.6	18
118	An engineered cell sheet composed of human islets and human fibroblast, bone marrow–derived mesenchymal stem cells, or adipose–derived mesenchymal stem cells: An in vitro comparison study. Islets, 2018, 10, e1445948.	1.8	17
119	BMX-001, a novel redox-active metalloporphyrin, improves islet function and engraftment in a murine transplant model. American Journal of Transplantation, 2018, 18, 1879-1889.	4.7	15
120	The Actual Operative Costs of Liver Transplantation and Normothermic Machine Perfusion in a Canadian Setting. PharmacoEconomics - Open, 2021, 5, 311-318.	1.8	15
121	Update on islet cell transplantation. Current Opinion in Organ Transplantation, 2021, 26, 397-404.	1.6	15
122	Experience of islet isolation without neutral protease supplementation. Islets, 2010, 2, 278-282.	1.8	14
123	Caspase Inhibitor IDN6556 Facilitates Marginal Mass Islet Engraftment in a Porcine Islet Autotransplant Model. Transplantation, 2012, 94, 30-35.	1.0	13
124	Clinical islet isolation outcomes with a highly purified neutral protease for pancreas dissociation. Islets, 2013, 5, 111-115.	1.8	13
125	A novel redox-active metalloporphyrin reduces reactive oxygen species and inflammatory markers but does not improve marginal mass engraftment in a murine donation after circulatory death islet transplantation model. Islets, 2016, 8, e1190058.	1.8	13
126	Protein Kinase C Inhibitor, AEB-071, Acts Complementarily With Cyclosporine to Prevent Islet Rejection in Rats. Transplantation, 2009, 87, 59-65.	1.0	12

#	Article	IF	CITATIONS
127	Long-term follow-up of hepatic ultrasound findings in subjects with magnetic resonance imaging defined hepatic steatosis following clinical islet transplantation. Islets, 2013, 5, 16-21.	1.8	12
128	Impact of adverse pancreatic injury at surgical procurement upon islet isolation outcome. Transplant International, 2014, 27, 1135-1142.	1.6	12
129	Outcomes Following Extrahepatic and Intraportal Pancreatic Islet Transplantation: A Comparative Cohort Study. Transplantation, 2022, 106, 2224-2231.	1.0	12
130	Normothermic ex-vivo liver perfusion: where do we stand and where to reach?. Expert Review of Gastroenterology and Hepatology, 2018, 12, 1045-1058.	3.0	11
131	Machine Perfusion of the Liver: Applications Beyond Transplantation. Transplantation, 2020, 104, 1804-1812.	1.0	11
132	Tumor necrosis factor receptor superfamily member 25 (TNFRSF25) agonists in islet transplantation: Endogenous in vivo regulatory T cell expansion promotes prolonged allograft survival. American Journal of Transplantation, 2021, , .	4.7	11
133	Circumportal pancreas and islet isolation. Surgery, 2009, 146, 126-127.	1.9	10
134	Immune Antibody Monitoring Predicts Outcome in Islet Transplantation. Diabetes, 2013, 62, 1377-1378.	0.6	10
135	Higher subcutaneous adipose tissue radiodensity is associated with increased mortality in patients with cirrhosis. JHEP Reports, 2022, 4, 100495.	4.9	10
136	Islet transplantationâ€"the imperative need for continued clinical trials. Nature Clinical Practice Nephrology, 2008, 4, 662-663.	2.0	9
137	116-OR: Comparison of Pancreas vs. Islet Transplantation Outcomes from a Large Single Center. Diabetes, 2020, 69, .	0.6	9
138	Progress in Islet Transplantation in Patients with Type 1 Diabetes Mellitus. Treatments in Endocrinology: Guiding Your Management of Endocrine Disorders, 2006, 5, 147-158.	1.8	8
139	Insulinoma or non-insulinoma pancreatogenous hypoglycemia? A diagnostic dilemma. Journal of Surgical Case Reports, 2016, 2016, rjw188.	0.4	8
140	Addressing organ shortages: progress in donation after circulatory death for liver transplantation. Canadian Journal of Surgery, 2020, 63, E135-E141.	1.2	8
141	Magnetic Resonance-Defined Perinephric Edema After Clinical Islet Transplantation: A Benign Finding Associated with Mild Renal Impairment. Transplantation, 2004, 78, 945-948.	1.0	7
142	Portal Vein Embolization with Radiolabeled Polyvinyl Alcohol Particles in a Swine Model: Hepatic Distribution and Implications for Pancreatic Islet Cell Transplantation. CardioVascular and Interventional Radiology, 2009, 32, 499-507.	2.0	7
143	Ex situ liver perfusion: Organ preservation into the future. Transplantation Reviews, 2018, 32, 132-141.	2.9	7
144	Optimizing Generation of Stem Cell-Derived Islet Cells. Stem Cell Reviews and Reports, 2022, 18, 2683-2698.	3.8	7

#	Article	IF	CITATIONS
145	The Risk to Human Islet Cell Transplant Recipients of Acquiring Variant Creutzfeldt-Jakob Disease: A Provisional Quantitative Risk Assessment. Transplantation, 2011, 92, e2-e4.	1.0	6
146	Pan-caspase inhibitor F573 mitigates liver ischemia reperfusion injury in a murine model. PLoS ONE, 2019, 14, e0224567.	2.5	6
147	Targeting CXCR1/2 in the first multicenter, double-blinded, randomized trial in autologous islet transplant recipients. American Journal of Transplantation, 2021, 21, 3714-3724.	4.7	6
148	Humoral Immune Response following Seasonal Influenza Vaccine in Islet Transplant Recipients. Cell Transplantation, 2013, 22, 469-476.	2.5	5
149	Total pancreatectomy with islet cell autotransplantation in a 2-year-old child with hereditary pancreatitis due to a PRSS1 mutation. American Journal of Transplantation, 2021, 21, 3790-3793.	4.7	5
150	AEB071 (sotrastaurin) does not exhibit toxic effects on human islets in vitro nor after transplantation into immunodeficient mice. Islets, 2011, 3, 338-343.	1.8	3
151	Pancreas Versus Islets After a Successful Kidney Transplant. Current Transplantation Reports, 2014, 1, 124-135.	2.0	3
152	Circumportal pancreas accompanied with pancreas divisum in a deceased donor for islet transplantation. Surgical and Radiologic Anatomy, 2018, 40, 1323-1325.	1.2	3
153	Islet Cell Transplantation., 2019,, 987-1007.		3
154	Normothermic Preservation of Liver – What Does the Future Hold?. Advances in Experimental Medicine and Biology, 2020, 1288, 13-31.	1.6	3
155	Opportunities and impediments of human pluripotent stem cell-derived islets in the treatment of diabetes. Journal of Immunology and Regenerative Medicine, 2022, 17, 100064.	0.4	2
156	Total pancreatectomy and autoislet transplant for chronic recurrent pancreatitis in a 5-year-old boy. Journal of Pediatric Surgery Case Reports, 2016, 13, 28-30.	0.2	1
157	Low energy X-ray (grenz ray) treatment of purified islets prior to allotransplant markedly decreases passenger leukocyte populations. Islets, 2017, 9, e1330742.	1.8	1
158	Treating diabetes with islet cell transplantation: Lessons from the Edmonton experience. , 2020, , 671-684.		1
159	Frequency of Obliteration of the Dorsal and Ventral Ducts of the Pancreas in Islet Transplantation. Digestive Diseases and Sciences, 2021, 66, 218-223.	2.3	1
160	Current Status, Barriers, and Future Directions for Humanized Mouse Models to Evaluate Stem Cell–Based Islet Cell Transplant. Advances in Experimental Medicine and Biology, 2022, , 89-106.	1.6	1
161	Islet Transplantation for Type 1 Diabetes. Juntendo Medical Journal, 2015, 61, 131-135.	0.1	0
162	Invited Commentary on "lmaging of Intestinal and Multivisceral Transplantation― Radiographics, 2018, 38, 432-434.	3.3	0

#	Article	IF	CITATIONS
163	Islet Cell Transplantation. , 2018, , 181-196.		O
164	Transplantation: Pancreatic and Islet Cells. , 2019, , 259-269.		0
165	Reassessment of the embryonic fusion plane between the ventral and dorsal pancreases in human donors for transplantation. Pancreatology, 2022, , .	1.1	O