
Steven C Cramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5370041/publications.pdf Version: 2024-02-01

STEVEN C CDAMED

#	Article	IF	CITATIONS
1	Predicting motor gains with home-based telerehabilitation after stroke. Journal of Telemedicine and Telecare, 2023, 29, 799-807.	2.7	5
2	International stroke genetics consortium recommendations for studies of genetics of stroke outcome and recovery. International Journal of Stroke, 2022, 17, 260-268.	5.9	13
3	The role of goal adjustment during rehabilitation from stroke. Applied Psychology: Health and Well-Being, 2022, 14, 26-43.	3.0	3
4	Accurate Prediction of Persistent Upper Extremity Impairment in Patients With Ischemic Stroke. Archives of Physical Medicine and Rehabilitation, 2022, 103, 964-969.	0.9	2
5	A Proposed Brain-, Spine-, and Mental- Health Screening Methodology (NEUROSCREEN) for Healthcare Systems: Position of the Society for Brain Mapping and Therapeutics. Journal of Alzheimer's Disease, 2022, , 1-21.	2.6	6
6	Advances in Stroke Recovery Therapeutics. Stroke, 2022, 53, 260-263.	2.0	2
7	Association of Modified Rankin Scale With Recovery Phenotypes in Patients With Upper Extremity Weakness After Stroke. Neurology, 2022, 98, .	1.1	13
8	Corticospinal Tract Lesion Load Originating From Both Ventral Premotor and Primary Motor Cortices Are Associated With Post-stroke Motor Severity. Neurorehabilitation and Neural Repair, 2022, 36, 179-182.	2.9	10
9	Functional connectivity drives stroke recovery: shifting the paradigm from correlation to causation. Brain, 2022, 145, 1211-1228.	7.6	24
10	Genetic Factors, Brain Atrophy, and Response to Rehabilitation Therapy After Stroke. Neurorehabilitation and Neural Repair, 2022, 36, 131-139.	2.9	8
11	Observational Study of Neuroimaging Biomarkers of Severe Upper Limb Impairment After Stroke. Neurology, 2022, 99, .	1.1	10
12	Variability of the Modified Rankin Scale Score Between Day 90 and 1 Year After Ischemic Stroke. Neurology: Clinical Practice, 2021, 11, e239-e244.	1.6	8
13	Timing of Readiness Potentials Reflect a Decision-making Process in the Human Brain. Computational Brain & Behavior, 2021, 4, 264-283.	1.7	9
14	Cell Therapy for Chronic TBI. Neurology, 2021, 96, .	1.1	41
15	Intense Arm Rehabilitation Therapy Improves the Modified Rankin Scale Score. Neurology, 2021, 96, e1812-e1822.	1.1	12
16	Social Network Structure Is Related to Functional Improvement From Home-Based Telerehabilitation After Stroke. Frontiers in Neurology, 2021, 12, 603767.	2.4	15
17	Principles of Neural Repair and Their Application to Stroke Recovery Trials. Seminars in Neurology, 2021, 41, 157-166.	1.4	4
18	The Utility of Domain-Specific End Points in Acute Stroke Trials. Stroke, 2021, 52, 1154-1161.	2.0	13

#	Article	IF	CITATIONS
19	Cognitive Demands Influence Upper Extremity Motor Performance During Recovery From Acute Stroke. Neurology, 2021, 96, e2576-e2586.	1.1	16
20	Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet, The, 2021, 397, 1545-1553.	13.7	181
21	Using a bimanual lever-driven wheelchair for arm movement practice early after stroke: A pilot, randomized, controlled, single-blind trial. Clinical Rehabilitation, 2021, 35, 1577-1589.	2.2	2
22	Domain-Specific Outcomes for Stroke Clinical Trials. Neurology, 2021, 97, 367-377.	1.1	21
23	Determining minimally clinically important differences for outcome measures in patients with chronic motor deficits secondary to traumatic brain injury. Expert Review of Neurotherapeutics, 2021, 21, 1051-1058.	2.8	4
24	Coherent neural oscillations inform early stroke motor recovery. Human Brain Mapping, 2021, 42, 5636-5647.	3.6	16
25	Clinical Performance Measures for Stroke Rehabilitation: Performance Measures From the American Heart Association/American Stroke Association. Stroke, 2021, 52, e675-e700.	2.0	17
26	Smaller spared subcortical nuclei are associated with worse post-stroke sensorimotor outcomes in 28 cohorts worldwide. Brain Communications, 2021, 3, fcab254.	3.3	7
27	A qualitative study on user acceptance of a home-based stroke telerehabilitation system. Topics in Stroke Rehabilitation, 2020, 27, 81-92.	1.9	66
28	Damage to the structural connectome reflected in resting-state fMRI functional connectivity. Network Neuroscience, 2020, 4, 1197-1218.	2.6	14
29	Gains Across WHO Dimensions of Function After Robot-Based Therapy in Stroke Subjects. Neurorehabilitation and Neural Repair, 2020, 34, 1150-1158.	2.9	4
30	National Institutes of Health StrokeNet During the Time of COVID-19 and Beyond. Stroke, 2020, 51, 2580-2586.	2.0	13
31	Electroencephalography Might Improve Diagnosis of Acute Stroke and Large Vessel Occlusion. Stroke, 2020, 51, 3361-3365.	2.0	27
32	Estimating minimal clinically important differences for two scales in patients with chronic traumatic brain injury. Current Medical Research and Opinion, 2020, 36, 1999-2007.	1.9	7
33	Low-Frequency Oscillations Are a Biomarker of Injury and Recovery After Stroke. Stroke, 2020, 51, 1442-1450.	2.0	73
34	Vagus Nerve Stimulation Paired With Upper-Limb Rehabilitation After Stroke: One-Year Follow-up. Neurorehabilitation and Neural Repair, 2020, 34, 609-615.	2.9	33
35	Issues important to the design of stroke recovery trials. Lancet Neurology, The, 2020, 19, 197-198.	10.2	10
36	A Feasibility Study of Expanded Home-Based Telerehabilitation After Stroke. Frontiers in Neurology, 2020, 11, 611453.	2.4	24

#	Article	IF	CITATIONS
37	Neural Correlates of Passive Position Finger Sense After Stroke. Neurorehabilitation and Neural Repair, 2019, 33, 740-750.	2.9	19
38	A stroke recovery trial development framework: Consensus-based core recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2019, 14, 792-802.	5.9	64
39	A Stroke Recovery Trial Development Framework: Consensus-Based Core Recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 2019, 33, 959-969.	2.9	24
40	Corticospinal Tract Injury Estimated From Acute Stroke Imaging Predicts Upper Extremity Motor Recovery After Stroke. Stroke, 2019, 50, 3569-3577.	2.0	70
41	Estimating Brain Connectivity Using Copula Gaussian Graphical Models. , 2019, , .		2
42	Phase I/II Study of Safety and Preliminary Efficacy of Intravenous Allogeneic Mesenchymal Stem Cells in Chronic Stroke. Stroke, 2019, 50, 2835-2841.	2.0	123
43	Efficacy of Home-Based Telerehabilitation vs In-Clinic Therapy for Adults After Stroke. JAMA Neurology, 2019, 76, 1079.	9.0	213
44	Electroencephalography Measures are Useful for Identifying Large Acute Ischemic Stroke in the Emergency Department. Journal of Stroke and Cerebrovascular Diseases, 2019, 28, 2280-2286.	1.6	35
45	Setting the scene for the Second Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2019, 14, 450-456.	5.9	44
46	Intense rehabilitation therapy produces very large gains in chronic stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 497-497.	1.9	4
47	Somatosensory system integrity explains differences in treatment response after stroke. Neurology, 2019, 92, e1098-e1108.	1.1	75
48	Study protocol for a pivotal randomised study assessing vagus nerve stimulation during rehabilitation for improved upper limb motor function after stroke. European Stroke Journal, 2019, 4, 363-377.	5.5	14
49	Home-based technologies for stroke rehabilitation: A systematic review. International Journal of Medical Informatics, 2019, 123, 11-22.	3.3	172
50	A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Scientific Data, 2018, 5, 180011.	5.3	170
51	Evolution of a US County System for Acute Comprehensive Stroke Care. Stroke, 2018, 49, 1217-1222.	2.0	10
52	Finger strength, individuation, and their interaction: Relationship to hand function and corticospinal tract injury after stroke. Clinical Neurophysiology, 2018, 129, 797-808.	1.5	39
53	Neuroimaging Identifies Patients Most Likely to Respond to a Restorative Stroke Therapy. Stroke, 2018, 49, 433-438.	2.0	55
54	Assessing acute psychological distress in the immediate aftermath of stroke. European Journal of Cardiovascular Nursing, 2018, 17, 186-189.	0.9	7

#	Article	IF	CITATIONS
55	Electroencephalographic connectivity measures predict learning of a motor sequencing task. Journal of Neurophysiology, 2018, 119, 490-498.	1.8	11
56	New Directions in Treatments Targeting Stroke Recovery. Stroke, 2018, 49, 3107-3114.	2.0	67
57	Treatments to Promote Neural Repair after Stroke. Journal of Stroke, 2018, 20, 57-70.	3.2	79
58	Vagus Nerve Stimulation Paired With Upper Limb Rehabilitation After Chronic Stroke. Stroke, 2018, 49, 2789-2792.	2.0	112
59	Pipeline for Analyzing Lesions After Stroke (PALS). Frontiers in Neuroinformatics, 2018, 12, 63.	2.5	19
60	Biomarkers of Rehabilitation Therapy Vary according to Stroke Severity. Neural Plasticity, 2018, 2018, 1-8.	2.2	16
61	Neural Repair for Cerebrovascular Diseases. , 2018, , 35-67.		Ο
62	Predicting Gains With Visuospatial Training After Stroke Using an EEG Measure of Frontoparietal Circuit Function. Frontiers in Neurology, 2018, 9, 597.	2.4	24
63	Stimulating Dialogue Through Treatment of Poststroke Aphasia With Transcranial Direct Current Stimulation. JAMA Neurology, 2018, 75, 1465.	9.0	2
64	Recovery in My Lens: A Study on Stroke Vlogs. AMIA Annual Symposium proceedings, 2018, 2018, 1300-1309.	0.2	0
65	Demystifying Poststroke Pain: From Etiology to Treatment. PM and R, 2017, 9, 63-75.	1.6	72
66	Spontaneous and Therapeutic-Induced Mechanisms of Functional Recovery After Stroke. Translational Stroke Research, 2017, 8, 33-46.	4.2	199
67	Proof-of-Concept Randomized Trial of the Monoclonal Antibody GSK249320 Versus Placebo in Stroke Patients. Stroke, 2017, 48, 692-698.	2.0	31
68	Stroke Recovery and Rehabilitation Research. Stroke, 2017, 48, 813-819.	2.0	98
69	Role of corpus callosum integrity in arm function differs based on motor severity after stroke. NeuroImage: Clinical, 2017, 14, 641-647.	2.7	38
70	Can allogeneic stem cells improve outcomes after stroke?. Lancet Neurology, The, 2017, 16, 335-336.	10.2	2
71	Agreed Definitions and a Shared Vision for New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation Roundtable Taskforce. Neurorehabilitation and Neural Repair, 2017, 31, 793-799.	2.9	225
72	Agreed definitions and a shared vision for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. International Journal of Stroke, 2017, 12, 444-450.	5.9	624

#	Article	IF	CITATIONS
73	Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2017, 12, 480-493.	5.9	266
74	Translational Stroke Research. Stroke, 2017, 48, 2632-2637.	2.0	108
75	Moving Rehabilitation Research Forward: Developing Consensus Statements for Rehabilitation and Recovery Research. Neurorehabilitation and Neural Repair, 2017, 31, 694-698.	2.9	40
76	Biomarkers of Stroke Recovery: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 2017, 31, 864-876.	2.9	124
77	Utility of EEG measures of brain function in patients with acute stroke. Journal of Neurophysiology, 2016, 115, 2399-2405.	1.8	90
78	Moving rehabilitation research forward: Developing consensus statements for rehabilitation and recovery research. International Journal of Stroke, 2016, 11, 454-458.	5.9	137
79	Guidelines for Adult Stroke Rehabilitation and Recovery. Stroke, 2016, 47, e98-e169.	2.0	1,847
80	The Volume of the Spleen and Its Correlates after Acute Stroke. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 2958-2961.	1.6	41
81	Genetics as a Molecular Window into Recovery, Its Treatment, and Stress Responses after Stroke. Journal of Investigative Medicine, 2016, 64, 983-988.	1.6	2
82	Dorsal premotor activity and connectivity relate to action selection performance after stroke. Human Brain Mapping, 2016, 37, 1816-1830.	3.6	23
83	Use of a robotic device to measure age-related decline in finger proprioception. Experimental Brain Research, 2016, 234, 83-93.	1.5	31
84	Safety, Feasibility, and Efficacy of Vagus Nerve Stimulation Paired With Upper-Limb Rehabilitation After Ischemic Stroke. Stroke, 2016, 47, 143-150.	2.0	203
85	BDNF Val66Met Polymorphism Is Related to Motor System Function After Stroke. Physical Therapy, 2016, 96, 533-539.	2.4	33
86	Epidural Electrical Stimulation for Stroke Rehabilitation. Neurorehabilitation and Neural Repair, 2016, 30, 107-119.	2.9	131
87	The Badges Program: A Self-Directed Learning Guide for Residents for Conducting Research and a Successful Peer-Reviewed Publication. MedEdPORTAL: the Journal of Teaching and Learning Resources, 2016, 12, 10443.	1.2	4
88	GSK249320, A Monoclonal Antibody Against the Axon Outgrowth Inhibition Molecule Myelin-Associated Glycoprotein, Improves Outcome of Rodents with Experimental Stroke. Journal of Neurology and Experimental Neuroscience, 2016, 2, 28-33.	0.1	6
89	Brain-controlled functional electrical stimulation therapy for gait rehabilitation after stroke: a safety study. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 57.	4.6	43
90	An exploratory data analysis of electroencephalograms using the functional boxplots approach. Frontiers in Neuroscience, 2015, 9, 282.	2.8	11

#	Article	IF	CITATIONS
91	Altered organization of faceâ€processing networks in temporal lobe epilepsy. Epilepsia, 2015, 56, 762-771.	5.1	22
92	Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain, 2015, 138, 2359-2369.	7.6	166
93	Imaging in StrokeNet. Stroke, 2015, 46, 2000-2006.	2.0	25
94	Effects of Postinfarct Myelin-Associated Glycoprotein Antibody Treatment on Motor Recovery and Motor Map Plasticity in Squirrel Monkeys. Stroke, 2015, 46, 1620-1625.	2.0	14
95	Chronic Stroke Outcome Measures for Motor Function Intervention Trials. Circulation: Cardiovascular Quality and Outcomes, 2015, 8, S163-9.	2.2	81
96	Drugs to Enhance Motor Recovery After Stroke. Stroke, 2015, 46, 2998-3005.	2.0	70
97	Neural function, injury, and stroke subtype predict treatment gains after stroke. Annals of Neurology, 2015, 77, 132-145.	5.3	180
98	Paradoxical visuomotor adaptation to reversed visual input is predicted by BDNF Val66Met polymorphism. Journal of Vision, 2014, 14, 4-4.	0.3	12
99	Methods for an International Randomized Clinical Trial to Investigate the Effect of Gsk249320 on Motor Cortex Neurophysiology using Transcranial Magnetic Stimulation in Survivors of Stroke. Journal of Clinical Trials, 2014, 04, 1-9.	0.1	9
100	Motor imagery during movement activates the brain more than movement alone after stroke: A pilot study. Journal of Rehabilitation Medicine, 2014, 46, 843-848.	1.1	25
101	Predictors and Biomarkers of Treatment Gains in a Clinical Stroke Trial Targeting the Lower Extremity. Stroke, 2014, 45, 2379-2384.	2.0	39
102	Resting-state cortical connectivity predicts motor skill acquisition. NeuroImage, 2014, 91, 84-90.	4.2	127
103	Age-related variability in performance of a motor action selection task is related to differences in brain function and structure among older adults. NeuroImage, 2014, 86, 326-334.	4.2	33
104	Human Choriogonadotropin and Epoetin Alfa in Acute Ischemic Stroke Patients (REGENESIS-LED Trial). International Journal of Stroke, 2014, 9, 321-327.	5.9	26
105	Effect of Overground Training Augmented by Mental Practice on Gait Velocity in Chronic, Incomplete Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2014, 95, 615-621.	0.9	15
106	Stem Cells as an Emerging Paradigm in Stroke 3. Stroke, 2014, 45, 634-639.	2.0	141
107	A multimodal approach to understanding motor impairment and disability after stroke. Journal of Neurology, 2014, 261, 1178-1186.	3.6	38
108	Dopamine Genetic Risk Score Predicts Depressive Symptoms in Healthy Adults and Adults with Depression. PLoS ONE, 2014, 9, e93772.	2.5	71

#	Article	IF	CITATIONS
109	A Standardized Approach to the Fugl-Meyer Assessment and Its Implications for Clinical Trials. Neurorehabilitation and Neural Repair, 2013, 27, 732-741.	2.9	204
110	Biomarkers and Predictors of Restorative Therapy Effects After Stroke. Current Neurology and Neuroscience Reports, 2013, 13, 329.	4.2	64
111	Safety, Pharmacokinetics, and Pharmacodynamics of Escalating Repeat Doses of CSK249320 in Patients With Stroke. Stroke, 2013, 44, 1337-1342.	2.0	28
112	Patient-Reported Measures Provide Unique Insights Into Motor Function After Stroke. Stroke, 2013, 44, 1111-1116.	2.0	125
113	Targeted engagement of a dorsal premotor circuit in the treatment of post-stroke paresis. NeuroRehabilitation, 2013, 33, 13-24.	1.3	17
114	Predictors of Gains During Inpatient Rehabilitation in Patients with Stroke: A Review. Critical Reviews in Physical and Rehabilitation Medicine, 2013, 25, 203-221.	0.1	26
115	A system for addressing incidental findings in neuroimaging research. Neurolmage, 2011, 55, 1020-1023.	4.2	21
116	Listening to Fluoxetine: A Hot Message from the FLAME Trial of Poststroke Motor Recovery. International Journal of Stroke, 2011, 6, 315-316.	5.9	11
117	Intense training overcomes effects of the val66met BDNF polymorphism on short-term plasticity. Experimental Brain Research, 2011, 213, 415-422.	1.5	45
118	An overview of therapies to promote repair of the brain after stroke. Head and Neck, 2011, 33, S5-7.	2.0	17
119	Improving Outcomes After Stroke By LEAPS (Locomotor Experience Applied Post-Stroke) and Bounds. Stroke, 2011, 42, 3659-3660.	2.0	2
120	Harnessing neuroplasticity for clinical applications. Brain, 2011, 134, 1591-1609.	7.6	907
121	Anatomy of Stroke Injury Predicts Gains From Therapy. Stroke, 2011, 42, 421-426.	2.0	215
122	Anatomy and physiology predict response to motor cortex stimulation after stroke. Neurology, 2011, 77, 1076-1083.	1.1	97
123	Stratifying Patients With Stroke in Trials That Target Brain Repair. Stroke, 2010, 41, S114-6.	2.0	50
124	The Beta-hCG+Erythropoietin in Acute Stroke (BETAS) Study. Stroke, 2010, 41, 927-931.	2.0	43
125	Increased prevalence of val66met BDNF genotype among subjects with cervical dystonia. Neuroscience Letters, 2010, 468, 42-45.	2.1	21
126	Use of Imaging in Restorative Stroke Trials. Stroke, 2009, 40, S28-9.	2.0	7

8

#	Article	IF	CITATIONS
127	Randomized, Placebo-Controlled, Double-Blind Study of Ropinirole in Chronic Stroke. Stroke, 2009, 40, 3034-3038.	2.0	53
128	Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Annals of Neurology, 2008, 63, 272-287.	5.3	673
129	Repairing the human brain after stroke. II. Restorative therapies. Annals of Neurology, 2008, 63, 549-560.	5.3	247
130	A Standardized Approach to Performing the Action Research Arm Test. Neurorehabilitation and Neural Repair, 2008, 22, 78-90.	2.9	484
131	Robot-based hand motor therapy after stroke. Brain, 2008, 131, 425-437.	7.6	544
132	Biomarkers of recovery after stroke. Current Opinion in Neurology, 2008, 21, 654-659.	3.6	53
133	Neuroplasticity and brain repair after stroke. Current Opinion in Neurology, 2008, 21, 76-82.	3.6	148
134	The Case for Modality-Specific Outcome Measures in Clinical Trials of Stroke Recovery-Promoting Agents. Stroke, 2007, 38, 1393-1395.	2.0	107
135	Predicting Functional Gains in a Stroke Trial. Stroke, 2007, 38, 2108-2114.	2.0	112
136	The EXCITE Trial. Stroke, 2007, 38, 2204-2205.	2.0	12
137	Effects of motor imagery training after chronic, complete spinal cord injury. Experimental Brain Research, 2007, 177, 233-242.	1.5	137
138	Functional Imaging of Intervention Effects in Stroke Motor Rehabilitation. Archives of Physical Medicine and Rehabilitation, 2006, 87, 36-42.	0.9	98
139	BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nature Neuroscience, 2006, 9, 735-737.	14.8	498
140	Somatotopy and movement representation sites following cortical stroke. Experimental Brain Research, 2006, 168, 25-32.	1.5	92
141	Activity in the Peri-Infarct Rim in Relation to Recovery From Stroke. Stroke, 2006, 37, 111-115.	2.0	64
142	Marrow Stromal Cell (MSC) Growth from Long Term Cryopreserved Bone Marrow Blood, 2006, 108, 5227-5227.	1.4	1
143	Patent Foramen Ovale and Stroke: Prognosis and Treatment in Young Adults. Journal of Thrombosis and Thrombolysis, 2005, 20, 85-91.	2.1	6
144	Brain motor system function after chronic, complete spinal cord injury. Brain, 2005, 128, 2941-2950.	7.6	194

#	Article	IF	CITATIONS
145	Patent foramen ovale and its relationship to stroke. Cardiology Clinics, 2005, 23, 7-11.	2.2	7
146	Brain Function Early after Stroke in Relation to Subsequent Recovery. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 756-763.	4.3	41
147	Changes in motor system function and recovery after stroke. Restorative Neurology and Neuroscience, 2004, 22, 231-8.	0.7	19
148	Paradoxical Emboli from Calf and Pelvic Veins in Cryptogenic Stroke. Journal of Neuroimaging, 2003, 13, 218-223.	2.0	23
149	Functional magnetic resonance imaging in stroke recovery. Physical Medicine and Rehabilitation Clinics of North America, 2003, 14, S47-S55.	1.3	19
150	Clinical Issues in Animal Models of Stroke and Rehabilitation. ILAR Journal, 2003, 44, 83-84.	1.8	21
151	Mapping individual brains to guide restorative therapy after stroke: Rationale and pilot studies. Neurological Research, 2003, 25, 811-814.	1.3	25
152	Improved understanding of cortical injury by incorporating measures of functional anatomy. Brain, 2003, 126, 1650-1659.	7.6	111
153	Motor cortex activation is preserved in patients with chronic hemiplegic stroke. Annals of Neurology, 2002, 52, 607-616.	5.3	68
154	A Pilot Study of Somatotopic Mapping After Cortical Infarct. Stroke, 2000, 31, 668-671.	2.0	134
155	Regional Ischemia and Ischemic Injury in Patients With Acute Middle Cerebral Artery Stroke as Defined by Early Diffusion-Weighted and Perfusion-Weighted MRI. Stroke, 1998, 29, 939-943.	2.0	269
156	Pharmacological Elevation of Blood Pressure in Acute Stroke. Stroke, 1997, 28, 2133-2138.	2.0	171
157	A Functional MRI Study of Subjects Recovered From Hemiparetic Stroke. Stroke, 1997, 28, 2518-2527.	2.0	858
158	Moyamoya and Down Syndrome. Stroke, 1996, 27, 2131-2135.	2.0	84
159	Colocalization of GLUT2 Glucose Transporter, Sodium/glucose Cotransporter, and Â-Glutamyl Transpeptidase in Rat Kidney With Double-Peroxidase Immunocytochemistry. Diabetes, 1992, 41, 766-770.	0.6	52