Richard J Cornall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5369421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Observational Cohort Study on the Incidence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and B.1.1.7 Variant Infection in Healthcare Workers by Antibody and Vaccination Status. Clinical Infectious Diseases, 2022, 74, 1208-1219.	5.8	64
2	Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell, 2022, 185, 1777-1792.e21.	28.9	437
3	Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. New England Journal of Medicine, 2021, 384, 533-540.	27.0	803
4	Stringent thresholds in SARS-CoV-2 IgG assays lead to under-detection of mild infections. BMC Infectious Diseases, 2021, 21, 187.	2.9	23
5	The Duration, Dynamics, and Determinants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibody Responses in Individual Healthcare Workers. Clinical Infectious Diseases, 2021, 73, e699-e709.	5.8	235
6	High-throughput phenotyping reveals expansive genetic and structural underpinnings of immune variation. Nature Immunology, 2020, 21, 86-100.	14.5	32
7	Treatment With FoxP3+ Antigen-Experienced T Regulatory Cells Arrests Progressive Retinal Damage in a Spontaneous Model of Uveitis. Frontiers in Immunology, 2020, 11, 2071.	4.8	7
8	Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nature Immunology, 2020, 21, 1336-1345.	14.5	1,066
9	Performance characteristics of five immunoassays for SARS-CoV-2: a head-to-head benchmark comparison. Lancet Infectious Diseases, The, 2020, 20, 1390-1400.	9.1	336
10	Dynamic regulation of hypoxia-inducible factor-1α activity is essential for normal B cell development. Nature Immunology, 2020, 21, 1408-1420.	14.5	40
11	An ontogenetic switch drives the positive and negative selection of B cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3718-3727.	7.1	22
12	Antibody testing for COVID-19: A report from theÂNational COVID Scientific Advisory Panel. Wellcome Open Research, 2020, 5, 139.	1.8	179
13	SARS-CoV-2 antibody prevalence, titres and neutralising activity in an antenatal cohort, United Kingdom, 14 April to 15 June 2020. Eurosurveillance, 2020, 25, .	7.0	17
14	Differential occupational risks to healthcare workers from SARS-CoV-2 observed during a prospective observational study. ELife, 2020, 9, .	6.0	196
15	An essential role for the Zn2+ transporter ZIP7 in B cell development. Nature Immunology, 2019, 20, 350-361.	14.5	92
16	Capturing resting T cells: the perils of PLL. Nature Immunology, 2018, 19, 203-205.	14.5	62
17	B1a B cells require autophagy for metabolic homeostasis and self-renewal. Journal of Experimental Medicine, 2018, 215, 399-413.	8.5	97
18	Partial retinal photoreceptor loss in a transgenic mouse model associated with reduced levels of interphotoreceptor retinol binding protein (IRBP, RBP3). Experimental Eye Research, 2018, 172, 54-65.	2.6	7

RICHARD J CORNALL

#	Article	IF	CITATIONS
19	Immune Checkpoints as Therapeutic Targets in Autoimmunity. Frontiers in Immunology, 2018, 9, 2306.	4.8	96
20	53BP1 cooperation with the REV7–shieldin complex underpins DNA structure-specific NHEJ. Nature, 2018, 560, 122-127.	27.8	222
21	Themis2 lowers the threshold for B cell activation during positive selection. Nature Immunology, 2017, 18, 205-213.	14.5	21
22	THEMIS: Two Models, Different Thresholds. Trends in Immunology, 2017, 38, 622-632.	6.8	20
23	Themis2: setting the threshold for B-cell selection. Cellular and Molecular Immunology, 2017, 14, 643-645.	10.5	5
24	Mutation of <i>Fnip1</i> is associated with B-cell deficiency, cardiomyopathy, and elevated AMPK activity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3706-15.	7.1	39
25	Two types of BCR interactions are positively selected during leukemia development in the Eμ-TCL1 transgenic mouse model of CLL. Blood, 2015, 125, 1578-1588.	1.4	52
26	Mutation of the ER retention receptor KDELR1 leads to cell-intrinsic lymphopenia and a failure to control chronic viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5706-14.	7.1	11
27	DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. Journal of Experimental Medicine, 2014, 211, 2549-2566.	8.5	150
28	DOCK8 is critical for the survival and function of NKT cells. Blood, 2013, 122, 2052-2061.	1.4	68
29	The Nature of the Antigen Determines Leukemia Development and Behavior in the Eμ-TCL1 Transgenic Mouse Model of CLL. Blood, 2012, 120, 181-181.	1.4	5
30	A whole blood monokine-based reporter assay provides a sensitive and robust measurement of the antigen-specific T cell response. Journal of Translational Medicine, 2011, 9, 143.	4.4	15
31	DOCK8 is essential for Tâ€cell survival and the maintenance of CD8 ⁺ Tâ€cell memory. European Journal of Immunology, 2011, 41, 3423-3435.	2.9	105
32	The Essential Role of DOCK8 in Humoral Immunity. Disease Markers, 2010, 29, 141-150.	1.3	24
33	Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection. Nature Immunology, 2009, 10, 831-839.	14.5	108
34	Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nature Immunology, 2009, 10, 1283-1291.	14.5	236
35	Increased Positive Selection of B1 Cells and Reduced B Cell Tolerance to Intracellular Antigens in c1q-Deficient Mice. Journal of Immunology, 2007, 178, 2916-2922.	0.8	32
36	MyD88â€dependent autoimmune disease in Lynâ€deficient mice. European Journal of Immunology, 2007, 37, 2734-2743.	2.9	54

RICHARD J CORNALL

#	Article	IF	CITATIONS
37	TLR4, TLR9 and MyD88 are not requiredfor the positive selection of autoreactive B cells intothe primary repertoire. European Journal of Immunology, 2006, 36, 1404-1412.	2.9	10
38	Spontaneous class switching and B cell hyperactivity increase autoimmunity against intracellular self antigen in Lyn-deficient mice. European Journal of Immunology, 2006, 36, 2920-2927.	2.9	5
39	Signals from a Self-Antigen Induce Positive Selection in Early B Cell Ontogeny but Are Tolerogenic in Adults. Journal of Immunology, 2006, 176, 7402-7411.	0.8	15
40	Analysis of Lyn/CD22 double-deficient B cellsin vivo demonstrates Lyn- and CD22-independent pathways affecting BCR regulation and B cell survival. European Journal of Immunology, 2005, 35, 3655-3663.	2.9	15
41	Hyper IgE in New Zealand black mice due to a dominant-negative CD23 mutation. Immunogenetics, 2004, 56, 564-571.	2.4	31
42	The Cellular Location of Self-antigen Determines the Positive and Negative Selection of Autoreactive B Cells. Journal of Experimental Medicine, 2003, 198, 1415-1425.	8.5	49
43	Tolerance and Autoimmunity to Neoantigen Expressed in Retina. Clinical Science, 2003, 104, 49P-49P.	0.0	0
44	Polygenic Autoimmune Traits: Lyn, CD22, and SHP-1 Are Limiting Elements of a Biochemical Pathway Regulating BCR Signaling and Selection. Immunity, 1998, 8, 497-508.	14.3	413
45	B Cell Antigen Receptor Signalling in the Balance of Tolerance and Immunity. Novartis Foundation Symposium, 1998, 215, 21-40.	1.1	13
46	Linkage analysis of 84 microsatellite markers in intra- and interspecific backcrosses. Mammalian Genome, 1992, 3, 457-460.	2.2	19
47	Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature, 1991, 351, 542-547.	27.8	513
48	Type 1 diabetes in mice is linked to the interleukin-1 receptor and Lsh/lty/Bcg genes on chromosome 1. Nature, 1991, 353, 262-265.	27.8	181