Weifeng Bu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5369407/publications.pdf

Version: 2024-02-01

394421 501196 47 949 19 28 citations g-index h-index papers 49 49 49 932 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamic oil gels constructed by 1,2-dithiolane-containing telechelic polymers: An efficient and versatile platform for fabricating polymer-inorganic composites toward tribological applications. Chemical Engineering Journal, 2022, 430, 133097.	12.7	12
2	Chiral gold(I)-containing polymeric composites: chiroptical sensing and circularly polarized luminescence. Journal of Organometallic Chemistry, 2021, 931, 121616.	1.8	7
3	Hierarchical self-assembly of miktoarm star copolymers with pathway complexity. Polymer Chemistry, 2021, 12, 1476-1486.	3.9	4
4	Robust Hybrid Omniphobic Surface for Stain Resistance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14562-14568.	8.0	19
5	Brush-like organic-inorganic hybrid polysiloxane surface with omniphobicity and extreme durability. Progress in Organic Coatings, 2021, 154, 106171.	3.9	11
6	Synthesis and hierarchical self-assembly of luminescent platinum(<scp>ii</scp>)-containing telechelic metallopolymers. Polymer Chemistry, 2021, 12, 5191-5200.	3.9	5
7	Dynamic metallopolymer networks: a protocol to quantify Pt(<scp>ii</scp>)â<-Pt(<scp>ii</scp>) and π–π stacking interactions. Journal of Materials Chemistry C, 2021, 9, 15422-15427.	5.5	4
8	Synthesis, luminescence enhancement, and self-assembly behaviours of platinum(<scp>ii</scp>)-containing ABC triblock metallopolymers. Journal of Materials Chemistry C, 2020, 8, 15616-15621.	5.5	6
9	Rhodium(I) Complex-Based Polymeric Nanomicelles in Water Exhibiting Coexistent Near-Infrared Phosphorescence Imaging and Anticancer Activity in Vivo. Journal of the American Chemical Society, 2020, 142, 2709-2714.	13.7	32
10	Amphiphilic miktoarm star copolymers can self-assemble into micelle-like aggregates in nonselective solvents: a case study of polyoxometalate based miktoarm stars. Science China Chemistry, 2020, 63, 792-801.	8.2	23
11	Telechelic amphiphilic metallopolymers end-functionalized with platinum(<scp>ii</scp>) complexes: synthesis, luminescence enhancement, and their self-assembly into flowerlike vesicles and giant flowerlike vesicles. Polymer Chemistry, 2019, 10, 4477-4484.	3.9	19
12	Sub-10 nm Scale Lamellar Structures with a High Degree of Long-Range Order Fabricated by Orthogonal Self-Assembly of Crown Ether/Secondary Dialkylammonium Recognition and MetalĀ·Ā·Ā·Metal/π–π Interactions. ACS Macro Letters, 2019, 8, 1012-1016.	4.8	15
13	Intensely phosphorescent block copolymer micelles containing gold(<scp>i</scp>) complexes. Soft Matter, 2018, 14, 3521-3527.	2.7	5
14	Coordination-driven micellelization of block copolymers with gold(<scp>i</scp>) complexes induces remarkable phosphorescence enhancements with reversible mechanochromism. Soft Matter, 2018, 14, 31-34.	2.7	10
15	How do polymer molecular weights influence the luminescence properties of metal-containing polymers? A case study of platinum(<scp>ii</scp>) complex end-functionalized polymers. Journal of Materials Chemistry C, 2018, 6, 12187-12191.	5.5	14
16	Secondary dialkylammonium salt/crown ether [2]pseudorotaxanes as nanostructured platforms for proton transport. Chemical Communications, 2018, 54, 8092-8095.	4.1	14
17	Polymer-Encapsulated Lanthanide-Containing Clusters as Platforms for Fabricating Magnetic Soft Materials. ACS Applied Materials & Samp; Interfaces, 2018, 10, 16947-16951.	8.0	10
18	Morphology-dependent AEE performance of conjugated poly(tetraphenylethene)s. Journal of Materials Chemistry C, 2017, 5, 3156-3166.	5.5	10

#	Article	IF	CITATIONS
19	Stepwise self-assembly of a block copolymer–platinum(<scp>ii</scp>) complex hybrid in solvents of variable quality: from worm-like micelles to free-standing sheets to vesicle-like nanostructures. Soft Matter, 2017, 13, 4791-4798.	2.7	15
20	Syntheses and Controllable Self-Assembly of Luminescence Platinum(II) Plane–Coil Diblock Copolymers. Macromolecules, 2017, 50, 2825-2837.	4.8	20
21	<i>E</i> / <i>Z</i> isomerization effects on aggregation-enhanced emission of tetraphenylethene derivatives assisted by host–guest recognition. RSC Advances, 2017, 7, 38581-38585.	3.6	4
22	Synthesis of platinum(<scp>ii</scp>) complex end functionalized star polymers: luminescence enhancements and unimolecular micelles in solvents of weakened quality. Polymer Chemistry, 2017, 8, 4716-4728.	3.9	16
23	Phosphorescent and semiconductive fiber-like micelles formed by platinum(<scp>ii</scp>) complexes and block copolymers. Journal of Materials Chemistry C, 2017, 5, 12500-12506.	5.5	18
24	Acidâ€"base-controlled and dibenzylammonium-assisted aggregation induced emission enhancement of poly(tetraphenylethene) with an impressive blue shift. Polymer Chemistry, 2016, 7, 3722-3730.	3.9	14
25	Multiple stimuli-responsive supramolecular gels constructed from metal–organic cycles. Polymer Chemistry, 2016, 7, 6288-6292.	3.9	21
26	Going beyond the classical amphiphilicity paradigm: the self-assembly of completely hydrophobic polymers into free-standing sheets and hollow nanostructures in solvents of variable quality. Soft Matter, 2016, 12, 5011-5021.	2.7	4
27	Supramolecular polymerization induced self-assembly into micelle and vesicle via acid–base controlled formation of fluorescence responsive supramolecular hyperbranched polymers. Polymer Chemistry, 2016, 7, 287-291.	3.9	11
28	Organic–inorganic hybrids formed by polyoxometalate-based surfactants with cationic polyelectrolytes and block copolymers. Journal of Materials Chemistry C, 2015, 3, 2450-2454.	5.5	20
29	Self-Assembly of Star Micelle into Vesicle in Solvents of Variable Quality: The Star Micelle Retains Its Core–Shell Nanostructure in the Vesicle. Langmuir, 2015, 31, 2262-2268.	3.5	21
30	Fluorescence responsive conjugated poly(tetraphenylethene) and its morphological transition from micelle to vesicle. Chemical Communications, 2015, 51, 7148-7151.	4.1	34
31	Tuning the luminescence behaviors of a chloroplatinum(<scp>ii</scp>) complex by component exchanges of dynamic acylhydrazone bonds. Dalton Transactions, 2015, 44, 66-70.	3.3	11
32	Vesicle fusion intermediates obtained from the self-assembly of a cationic platinum(ii) complex with sulfonate terminated polystyrenes. RSC Advances, 2014, 4, 9750.	3.6	7
33	Remarkable luminescence enhancement of chloroplatinum(ii) complexes of hexaethylene glycol methyl ether substituted 2,6-bis(benzimidazol-2′-yl)pyridine in water triggered by PF6â [™] . Dalton Transactions, 2014, 43, 13174-13177.	3.3	13
34	A reversible cross-linked polymer network based on conjugated polypseudorotaxanes. RSC Advances, 2014, 4, 51754-51757.	3.6	6
35	Self-Assembly of Polyoxometalate-Based Starlike Polymers in Solvents of Variable Quality: From Free-Standing Sheet to Vesicle. Macromolecules, 2014, 47, 7158-7168.	4.8	31
36	Synthesis and energy band characterization of hybrid molecular materials based on organic–polyoxometalate charge-transfer salts. Journal of Solid State Chemistry, 2014, 219, 93-98.	2.9	14

#	Article	lF	CITATION
37	Concentration and acid–base controllable fluorescence of a metallosupramolecular polymer. Chemical Communications, 2014, 50, 10841-10844.	4.1	34
38	Sub-millimeter free-suspended sheets formed by polyoxometalates with polyelectrolytes. Journal of Materials Chemistry C, 2014, 2, 5271-5274.	5.5	6
39	Reversible luminescence switching accompanied by assembly–disassembly of metallosupramolecular amphiphiles based on a platinum(<scp>ii</scp>) complex. Journal of Materials Chemistry C, 2013, 1, 1130-1136.	5.5	29
40	Synthesis and characterization of a luminescence metallosupramolecular hyperbranched polymer. Chemical Communications, 2013, 49, 3333.	4.1	28
41	Spherical Polymer Brushes in Solvents of Variable Quality: An Experimental Insight by TEM Imaging. Langmuir, 2013, 29, 4181-4186.	3.5	26
42	Tunable Interactions of Polyoxometalate-Based Brushlike Hybrids in Solvents of Variable Quality: From Self-Recognition to Supramolecular Recognition. Langmuir, 2013, 29, 10630-10634.	3.5	21
43	pHâ€Controlled Reversible Formation of a Supramolecular Hyperbranched Polymer Showing Fluorescence Switching. Chemistry - A European Journal, 2013, 19, 4922-4930.	3.3	27
44	Star-like supramolecular polymers fabricated by a Keplerate cluster with cationic terminated polymers and their self-assembly into vesicles. Chemical Communications, 2012, 48, 7067.	4.1	39
45	Luminescent polymeric hybrids formed by platinum(ii) complexes and block copolymers. Chemical Communications, 2011, 47, 9336.	4.1	30
46	Micelles and Vesicles Formed by Polyoxometalate–Block Copolymer Composites. Angewandte Chemie - International Edition, 2009, 48, 8281-8284.	13.8	100
47	Surfactant-Encapsulated Europium-Substituted Heteropolyoxotungstates:Â Structural Characterizations and Photophysical Properties. Journal of Physical Chemistry B, 2004, 108,	2.6	83