Michael R Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5368664/publications.pdf

Version: 2024-02-01

567281 752698 22 771 15 20 citations h-index g-index papers 22 22 22 741 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular Bottlebrushes as Novel Materials. Biomacromolecules, 2019, 20, 27-54.	5.4	230
2	Universality of the Entanglement Plateau Modulus of Comb and Bottlebrush Polymer Melts. Macromolecules, 2018, 51, 10028-10039.	4.8	61
3	Degradable and Recyclable Polymers by Reversible Deactivation Radical Polymerization. CCS Chemistry, 2022, 4, 2176-2211.	7.8	55
4	Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. Science Advances, 2022, 8, eabm2469.	10.3	53
5	Stable Activated Furan and Donor–Acceptor Stenhouse Adduct Polymer Conjugates as Chemical and Thermal Sensors. Macromolecules, 2019, 52, 4370-4375.	4.8	46
6	Copper(II) Chloride/Tris(2-pyridylmethyl)amine-Catalyzed Depolymerization of Poly(<i>n</i> -butyl) Tj ETQq0 0 0	rgBT/Over	rlogk 10 Tf 50
7	Depolymerization of P(PDMS ₁₁ MA) Bottlebrushes via Atom Transfer Radical Polymerization with Activator Regeneration. Macromolecules, 2021, 54, 5526-5538.	4.8	42
8	The effect of pendant group structure on the thermoresponsive properties of <i>N</i> -substituted polyesters. Polymer Chemistry, 2017, 8, 7195-7206.	3.9	36
9	Understanding the Relationship between Catalytic Activity and Termination in photoATRP: Synthesis of Linear and Bottlebrush Polyacrylates. Macromolecules, 2020, 53, 59-67.	4.8	31
10	Synthesis of high molecular weight poly(n-butyl acrylate) macromolecules via seATRP: From polymer stars to molecular bottlebrushes. European Polymer Journal, 2020, 126, 109566.	5.4	25
11	Benefits of Catalyzed Radical Termination: High-Yield Synthesis of Polyacrylate Molecular Bottlebrushes without Gelation. Macromolecules, 2018, 51, 6218-6225.	4.8	24
12	A Thermodynamic Roadmap for the Grafting-through Polymerization of PDMS ₁₁ MA. ACS Macro Letters, 2020, 9, 1303-1309.	4.8	20
13	Understanding the Synthesis of Linear–Bottlebrush–Linear Block Copolymers: Toward Plastomers with Well-Defined Mechanical Properties. Macromolecules, 2020, 53, 8324-8332.	4.8	19
14	Interfacial dilatational rheology as a bridge to connect amphiphilic heterografted bottlebrush copolymer architecture to emulsifying efficiency. Journal of Colloid and Interface Science, 2021, 581, 135-147.	9.4	18
15	A coacervate-forming biodegradable polyester with elevated LCST based on bis-(2-methoxyethyl)amine. Polymer Chemistry, 2016, 7, 4693-4702.	3.9	16
16	Nonâ€Tacky Fluorinated and Elastomeric STEM Networks. Macromolecular Rapid Communications, 2019, 40, 1800876.	3.9	15
17	Fabrication of Porous Functional Nanonetwork-Structured Polymers with Enhanced Adsorption Performance from Well-Defined Molecular Brush Building Blocks. Chemistry of Materials, 2018, 30, 8624-8629.	6.7	13
18	Fabrication of Porous Nanonetwork-Structured Carbons from Well-Defined Cylindrical Molecular Bottlebrushes. ACS Applied Materials & Defined Sciences, 2019, 11, 18763-18769.	8.0	11

#	Article	IF	CITATIONS
19	Poor Solvents Improve Yield of Grafting-Through Radical Polymerization of OEO ₁₉ MA. ACS Macro Letters, 2020, 9, 674-679.	4.8	10
20	Reflection on the Matyjaszewski Lab Webinar Series and the Rise of Webinars in Polymer Chemistry. ACS Macro Letters, 2021, 10, 54-59.	4.8	1
21	Thermally Degradable Poly(n-butyl acrylate) Model Networks Prepared by PhotoATRP and Radical Trap-Assisted Atom Transfer Radical Coupling. Polymers, 2022, 14, 713.	4.5	O

Kinetic comparison of isomeric oligo(ethylene oxide) (meth)acrylates: Aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate and methyl 2â€(oligo(ethylene oxide) methyl) Tj ETQq0 0 0 rgBT / ® xerlock 100 Tf 50 61