Carlos Alberto Martinez-Huitle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5367585/publications.pdf

Version: 2024-02-01

258 papers

16,915 citations

28274 55 h-index 123 g-index

274 all docs

274 docs citations

times ranked

274

9971 citing authors

#	Article	IF	CITATIONS
1	Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Applied Catalysis B: Environmental, 2009, 87, 105-145.	20.2	1,863
2	Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 2015, 166-167, 603-643.	20.2	1,687
3	Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, 2006, 35, 1324-1340.	38.1	1,476
4	Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chemical Reviews, 2015, 115, 13362-13407.	47.7	1,273
5	Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment. Applied Catalysis B: Environmental, 2018, 235, 103-129.	20.2	631
6	Electrochemical oxidation of organic pollutants for wastewater treatment. Current Opinion in Electrochemistry, 2018, 11, 62-71.	4.8	556
7	Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 2017, 801, 267-299.	3.8	468
8	Electrochemical Alternatives for Drinking Water Disinfection. Angewandte Chemie - International Edition, 2008, 47, 1998-2005.	13.8	318
9	Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors. Corrosion Science, 2013, 67, 281-291.	6.6	228
10	Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: A mini review. Electrochemistry Communications, 2015, 59, 52-55.	4.7	226
11	Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes. Electrochimica Acta, 2004, 50, 949-956.	5.2	203
12	Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications. Applied Catalysis B: Environmental, 2020, 270, 118857.	20.2	196
13	Electrochemical incineration of oxalic acid. Electrochimica Acta, 2004, 49, 4027-4034.	5.2	163
14	Electrochemical advanced oxidation processes for wastewater treatment: Advances in formation and detection of reactive species and mechanisms. Current Opinion in Electrochemistry, 2021, 27, 100678.	4.8	153
15	Electrochemical treatment of synthetic wastewaters containing Alphazurine A dye. Chemical Engineering Journal, 2009, 149, 348-352.	12.7	142
16	Role of electrode materials for the anodic oxidation of a real landfill leachate – Comparison between Ti–Ru–Sn ternary oxide, PbO2 and boron-doped diamond anode. Chemosphere, 2013, 90, 1455-1460.	8.2	139
17	Removal of the Pesticide Methamidophos from Aqueous Solutions by Electrooxidation using Pb/PbO ₂ , Ti/SnO ₂ , and Si/BDD Electrodes. Environmental Science & Emp; Technology, 2008, 42, 6929-6935.	10.0	136
18	Decontamination of real textile industrial effluent by strong oxidant species electrogenerated on diamond electrode: Viability and disadvantages of this electrochemical technology. Applied Catalysis B: Environmental, 2013, 130-131, 112-120.	20.2	135

#	Article	IF	Citations
19	Boron doped diamond electrode for the wastewater treatment. Journal of the Brazilian Chemical Society, 2006, 17, 227-236.	0.6	134
20	Degradation of the azo dye Acid Red 1 by anodic oxidation and indirect electrochemical processes based on Fenton's reaction chemistry. Relationship between decolorization, mineralization and products. Electrochimica Acta, 2014, 142, 276-288.	5.2	133
21	Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes. Applied Catalysis B: Environmental, 2005, 59, 259-266.	20.2	122
22	Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. Journal of Electroanalytical Chemistry, 2012, 674, 103-107.	3.8	116
23	Nature, Mechanisms and Reactivity of Electrogenerated Reactive Species at Thinâ€Film Boronâ€Doped Diamond (BDD) Electrodes During Electrochemical Wastewater Treatment. ChemElectroChem, 2019, 6, 2379-2392.	3.4	113
24	Degradation of acidic aqueous solutions of the diazo dye Congo Red by photo-assisted electrochemical processes based on Fenton's reaction chemistry. Applied Catalysis B: Environmental, 2015, 168-169, 559-571.	20.2	102
25	The use of renewable energies driving electrochemical technologies for environmental applications. Current Opinion in Electrochemistry, 2020, 22, 211-220.	4.8	101
26	Electrochemical treatment of fresh, brine and saline produced water generated by petrochemical industry using Ti/IrO2–Ta2O5 and BDD in flow reactor. Chemical Engineering Journal, 2013, 233, 47-55.	12.7	100
27	Electrocatalysis in wastewater treatment: recent mechanism advances. Quimica Nova, 2011, 34, 850-858.	0.3	99
28	Electrochemical oxidation of Methyl Red using Ti/Ru0.3Ti0.7O2 and Ti/Pt anodes. Chemical Engineering Journal, 2012, 204-206, 141-150.	12.7	98
29	Electrochemical conversion/combustion of a model organic pollutant on BDD anode: Role of sp 3 /sp 2 ratio. Electrochemistry Communications, 2014, 47, 37-40.	4.7	96
30	Application of electrochemical oxidation as alternative treatment of produced water generated by Brazilian petrochemical industry. Fuel Processing Technology, 2012, 96, 80-87.	7.2	94
31	Understanding active chlorine species production using boron doped diamond films with lower and higher sp3/sp2 ratio. Electrochemistry Communications, 2015, 55, 34-38.	4.7	93
32	Application of electrochemical technology for removing petroleum hydrocarbons from produced water using a DSA-type anode at different flow rates. Fuel, 2010, 89, 531-534.	6.4	91
33	Active chlorine species electrogenerated on Ti/Ru0.3Ti0.7O2 surface: Electrochemical behavior, concentration determination and their application. Journal of Electroanalytical Chemistry, 2014, 731, 145-152.	3.8	89
34	Electrochemical degradation of Novacron Yellow C-RG using boron-doped diamond and platinum anodes: Direct and Indirect oxidation. Electrochimica Acta, 2014, 140, 419-426.	5.2	85
35	Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters. Chemical Engineering Journal, 2011, 168, 208-214.	12.7	84
36	Treatment of real wastewater by photoelectrochemical methods: An overview. Chemosphere, 2021, 276, 130188.	8.2	84

#	Article	IF	Citations
37	Electrochemical advanced oxidation processes (EAOPs) as alternative treatment techniques for carwash wastewater reclamation. Chemosphere, 2018, 211, 998-1006.	8.2	78
38	Design of highly efficient porous carbon foam cathode for electro-Fenton degradation of antimicrobial sulfanilamide. Applied Catalysis B: Environmental, 2021, 283, 119652.	20.2	78
39	Electrochemical advanced oxidation processes coupled with peroxymonosulfate for the treatment of real washing machine effluent: A comparative study. Journal of Electroanalytical Chemistry, 2019, 847, 113182.	3.8	77
40	A critical review over the electrochemical disinfection of bacteria in synthetic and real wastewaters using a boron-doped diamond anode. Current Opinion in Solid State and Materials Science, 2021, 25, 100926.	11.5	76
41	Combined soil washing and CDEO for the removal of atrazine from soils. Journal of Hazardous Materials, 2015, 300, 129-134.	12.4	75
42	Electrochemical technology for the treatment of real washing machine effluent at pre-pilot plant scale by using active and non-active anodes. Journal of Electroanalytical Chemistry, 2018, 818, 216-222.	3.8	75
43	Degradation of 1-hydroxy-2,4-dinitrobenzene from aqueous solutions by electrochemical oxidation: Role of anodic material. Journal of Hazardous Materials, 2014, 268, 6-13.	12.4	70
44	Influence of mediated processes on the removal of Rhodamine with conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2015, 166-167, 454-459.	20.2	69
45	Treatment of an azo dye effluent by peroxi-coagulation and its comparison to traditional electrochemical advanced processes. Chemosphere, 2018, 204, 548-555.	8.2	69
46	Electrochemical Incineration in the Presence of Halides. Electrochemical and Solid-State Letters, 2005, 8, D35.	2.2	66
47	Fabrication and application of Nafion \hat{A}^{\otimes} -modified boron-doped diamond electrode as sensor for detecting caffeine. Diamond and Related Materials, 2010, 19, 1188-1193.	3.9	66
48	Electrochemical degradation of industrial textile dye disperse yellow 3: Role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway. Chemosphere, 2018, 198, 21-29.	8.2	66
49	Scale-up of electrochemical oxidation system for treatment of produced water generated by Brazilian petrochemical industry. Environmental Science and Pollution Research, 2014, 21, 8466-8475.	5.3	65
50	The role of particle size on the conductive diamond electrochemical oxidation of soil-washing effluent polluted with atrazine. Electrochemistry Communications, 2015, 55, 26-29.	4.7	64
51	Influence of the water hardness on the performance of electro-Fenton approach: Decolorization and mineralization of Eriochrome Black T. Electrochimica Acta, 2016, 208, 156-163.	5.2	64
52	Electroxidation of oxalic acid at different electrode materials. Journal of Applied Electrochemistry, 2010, 40, 1779-1787.	2.9	62
53	Electrochemical Degradation of Remazol Red BR and Novacron Blue C-D Dyes Using Diamond Electrode. Electrocatalysis, 2012, 3, 1-12.	3.0	62
54	Treatment of ex-situ soil-washing fluids polluted with petroleum by anodic oxidation, photolysis, sonolysis and combined approaches. Chemical Engineering Journal, 2017, 310, 581-588.	12.7	61

#	Article	IF	Citations
55	Recent advances in electro-Fenton process and its emerging applications. Critical Reviews in Environmental Science and Technology, 2023, 53, 887-913.	12.8	57
56	Application of electrochemical advanced oxidation processes with a boron-doped diamond anode to degrade acidic solutions of Reactive Blue 15 (Turqueoise Blue) dye. Electrochimica Acta, 2016, 197, 210-220.	5.2	56
57	Formation and growth of PbO2 inside TiO2 nanotubes for environmental applications. Applied Catalysis B: Environmental, 2014, 144, 174-181.	20.2	55
58	Electrochemical incineration of oxalic acid: Reactivity and engineering parameters. Journal of Applied Electrochemistry, 2005, 35, 1087-1093.	2.9	54
59	Total mineralization of mixtures of Tartrazine, Ponceau SS and Direct Blue 71 azo dyes by solar photoelectro-Fenton in pre-pilot plant. Chemosphere, 2018, 210, 1137-1144.	8.2	54
60	Decontamination of produced water containing petroleum hydrocarbons by electrochemical methods: a minireview. Environmental Science and Pollution Research, 2014, 21, 8432-8441.	5. 3	53
61	Reversible electrokinetic adsorption barriers for the removal of atrazine and oxyfluorfen from spiked soils. Journal of Hazardous Materials, 2017, 322, 413-420.	12.4	53
62	Investigation of persulfate production on BDD anode by understanding the impact of water concentration. Journal of Electroanalytical Chemistry, 2020, 860, 113927.	3.8	53
63	Effect of sp3/sp2 Ratio on Boron Doped Diamond Films for Producing Persulfate. ECS Electrochemistry Letters, 2015, 4, E9-E11.	1.9	52
64	Electrochemical promotion of strong oxidants to degrade Acid Red 211: Effect of supporting electrolytes. Journal of Electroanalytical Chemistry, 2015, 738, 84-91.	3.8	51
65	Electrochemical measurements and theoretical studies for understanding the behavior of catechol, resorcinol and hydroquinone on the boron doped diamond surface. RSC Advances, 2018, 8, 3483-3492.	3.6	51
66	On the oxygen evolution reaction at IrO 2 -SnO 2 mixed-oxide electrodes. Electrochimica Acta, 2014, 146, 257-261.	5.2	50
67	Vermiculite as heterogeneous catalyst in electrochemical Fenton-based processes: Application to the oxidation of Ponceau SS dye. Chemosphere, 2020, 240, 124838.	8.2	50
68	Electrochemical oxidation of oxalic acid in the presence of halides at boron doped diamond electrode. Journal of the Brazilian Chemical Society, 2008, 19, 150-156.	0.6	49
69	Effect of anodic materials on solar photoelectro-Fenton process using a diazo dye as a model contaminant. Chemosphere, 2019, 225, 880-889.	8.2	48
70	Electrooxidation of cardanol on mixed metal oxide (RuO2-TiO2 and IrO2-RuO2-TiO2) coated titanium anodes: insights into recalcitrant phenolic compounds. Electrochimica Acta, 2016, 212, 95-101.	5.2	47
71	Coupling electrokinetic remediation with phytoremediation for depolluting soil with petroleum and the use of electrochemical technologies for treating the effluent generated. Separation and Purification Technology, 2019, 208, 194-200.	7.9	47
72	A Brief Review on Environmental Application of Boron Doped Diamond Electrodes as a New Way for Electrochemical Incineration of Synthetic Dyes. International Journal of Electrochemistry, 2012, 2012, 1-18.	2.4	46

#	Article	IF	Citations
73	Evaluation of treatment of effluents contaminated with rifampicin by Fenton, electrochemical and associated processes. Journal of Water Process Engineering, 2018, 22, 250-257.	5.6	46
74	Electrochemical oxidation technology to treat textile wastewaters. Current Opinion in Electrochemistry, 2021, 29, 100806.	4.8	46
75	Dye wastewaters treatment using batch and recirculation flow electrocoagulation systems. Journal of Electroanalytical Chemistry, 2017, 801, 30-37.	3.8	45
76	Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure. Environmental Science and Pollution Research, 2014, 21, 9777-9784.	5.3	44
77	Application of electrokinetic soil flushing to four herbicides: A comparison. Chemosphere, 2016, 153, 205-211.	8.2	44
78	Electrokinetic-Fenton for the remediation low hydraulic conductivity soil contaminated with petroleum. Chemosphere, 2020, 248, 126029.	8.2	41
79	Removal of antibiotic rifampicin from aqueous media by advanced electrochemical oxidation: Role of electrode materials, electrolytes and real water matrices. Electrochimica Acta, 2021, 396, 139254.	5.2	41
80	Treating soil-washing fluids polluted with oxyfluorfen by sono-electrolysis with diamond anodes. Ultrasonics Sonochemistry, 2017, 34, 115-122.	8.2	40
81	Use of Pt and Boronâ€Doped Diamond Anodes in the Electrochemical Advanced Oxidation of Ponceau SS Diazo Dye in Acidic Sulfate Medium. ChemElectroChem, 2018, 5, 685-693.	3.4	40
82	The synergic persulfate-sodium dodecyl sulfate effect during the electro-oxidation of caffeine using active and non-active anodes. Chemosphere, 2020, 253, 126599.	8.2	39
83	A ceramic electrode of ZrO2-Y2O3 for the generation of oxidant species in anodic oxidation. Assessment of the treatment of Acid Blue 29 dye in sulfate and chloride media. Separation and Purification Technology, 2019, 228, 115747.	7.9	38
84	Electrokinetic extraction of surfactants and heavy metals from sewage sludge. Electrochimica Acta, 2009, 54, 2108-2118.	5.2	37
85	Solar photocatalytic application of NbO 2 OH as alternative photocatalyst for water treatment. Science of the Total Environment, 2017, 596-597, 79-86.	8.0	37
86	Sulfate pollution: evidence for electrochemical production of persulfate by oxidizing sulfate released by the surfactant sodium dodecyl sulfate. Environmental Chemistry Letters, 2018, 16, 647-652.	16.2	37
87	Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents. Environmental Science and Pollution Research, 2018, 25, 7002-7011.	5.3	37
88	Application of electro-Fenton process as alternative for degradation of Novacron Blue dye. Journal of Environmental Chemical Engineering, 2014, 2, 875-880.	6.7	36
89	Acid blue 29 decolorization and mineralization by anodic oxidation with a cold gas spray synthesized Sn–Cu–Sb alloy anode. Chemosphere, 2016, 148, 47-54.	8.2	36
90	Development of a functional stack of soil microbial fuel cells to power a water treatment reactor: From the lab to field trials in North East Brazil. Applied Energy, 2020, 278, 115680.	10.1	36

#	Article	IF	Citations
91	Evidence for the electrochemical production of persulfate at TiO ₂ nanotubes decorated with PbO ₂ . New Journal of Chemistry, 2018, 42, 5523-5531.	2.8	35
92	Electrochemical degradation of Acid Blue 113 dye using TiO 2 -nanotubes decorated with PbO 2 as anode. Environmental Nanotechnology, Monitoring and Management, 2016, 5, 13-20.	2.9	34
93	UV assisted electrochemical technologies for the removal of oxyfluorfen from soil washing wastes. Chemical Engineering Journal, 2017, 318, 2-9.	12.7	34
94	Electrochemical abatement of amaranth dye solutions using individual or an assembling of flow cells with Ti/Pt and Ti/Pt-SnSb anodes. Separation and Purification Technology, 2017, 179, 194-203.	7.9	34
95	Electrochemical behaviour of dopamine at covalent modified glassy carbon electrode with l-cysteine: preliminary results. Materials Research, 2009, 12, 375-384.	1.3	33
96	Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes. Journal of Environmental Management, 2016, 171, 260-266.	7.8	33
97	Niobium Oxide Catalysts as Emerging Material for Textile Wastewater Reuse: Photocatalytic Decolorization of Azo Dyes. Catalysts, 2019, 9, 1070.	3.5	33
98	Indirect Electrochemical Oxidation of Reactive Blue 19 Dye as a Model Organic Substrate: Role of Anode Material and Oxidants Electrochemically Generated. Journal of the Electrochemical Society, 2016, 163, E62-E69.	2.9	32
99	Performance of (in)active anodic materials for the electrooxidation of phenolic wastewaters from cashew-nut processing industry. Chemosphere, 2018, 201, 740-748.	8.2	32
100	Applicability of electrochemical technologies for removing and monitoring Pb2+ from soil and water. Journal of Electroanalytical Chemistry, 2018, 816, 171-178.	3.8	32
101	Electrochemical degradation of Azo-dye Acid Violet 7 using BDD anode: effect of flow reactor configuration on cell hydrodynamics and dye removal efficiency. Journal of Applied Electrochemistry, 2018, 48, 1321-1330.	2.9	32
102	Intensification of petroleum elimination in the presence of a surfactant using anodic electrochemical treatment with BDD anode. Journal of Electroanalytical Chemistry, 2019, 832, 453-458.	3.8	32
103	Solar photovoltaic-battery system as a green energy for driven electrochemical wastewater treatment technologies: Application to elimination of Brilliant Blue FCF dye solution. Journal of Environmental Chemical Engineering, 2019, 7, 102924.	6.7	31
104	Novel cork-graphite electrochemical sensor for voltammetric determination of caffeine. Journal of Electroanalytical Chemistry, 2019, 839, 283-289.	3.8	31
105	Application of TiO2-nanotubes/PbO2 as an anode for the electrochemical elimination of Acid Red 1 dye. Journal of Solid State Electrochemistry, 2019, 23, 351-360.	2.5	31
106	Removal of herbicide 1-chloro-2,4-dinitrobenzene (DNCB) from aqueous solutions by electrochemical oxidation using boron-doped diamond (BDD) and PbO2 electrodes. Journal of Hazardous Materials, 2021, 402, 123850.	12.4	31
107	Degradation of 2-hydroxybenzoic acid by advanced oxidation processes. Brazilian Journal of Chemical Engineering, 2009, 26, 503-513.	1.3	30
108	Electrochemical Oxidation of Acid Violet 7 Dye by Using Si/BDD and Nb/BDD Electrodes. Journal of the Electrochemical Society, 2018, 165, E250-E255.	2.9	30

#	Article	IF	CITATIONS
109	Calcite buffer effects in electrokinetic remediation of clopyralid-polluted soils. Separation and Purification Technology, 2019, 212, 376-387.	7.9	30
110	Fuel station effluent treatment by electrochemical technology. Journal of Electroanalytical Chemistry, 2016, 763, 97-103.	3.8	28
111	Unexpected Enhancement of Electrocatalytic Nature of Ti/(RuO ₂) _{<i>x</i>} Anodes Prepared by the Ionic Liquid-Thermal Decomposition Method. Industrial & Decomposition Meth	3.7	28
112	Activation by light irradiation of oxidants electrochemically generated during Rhodamine B elimination. Journal of Electroanalytical Chemistry, 2015, 757, 144-149.	3.8	26
113	Electrochemical study of carboxylic acids with Nb-supported boron doped diamond anode. Part 2: Electrochemical oxidation associated to DFT calculations. Journal of Electroanalytical Chemistry, 2017, 794, 93-102.	3.8	26
114	Electrochemical study of carboxylic acids with Nb-supported boron doped diamond anode. Part 1: Potentiodynamic measurements and bulk oxidations. Journal of Electroanalytical Chemistry, 2017, 794, 204-211.	3.8	26
115	Applicability of activated carbon obtained from peach stone as an electrochemical sensor for detecting caffeine. Journal of Electroanalytical Chemistry, 2018, 822, 171-176.	3.8	26
116	Use of a Dual Arrangement of Flow Cells for Electrochemical Decontamination of Aqueous Solutions Containing Synthetic Dyes. Electrocatalysis, 2013, 4, 274-282.	3.0	24
117	Elimination of Pb2+ through electrocoagulation: Applicability of adsorptive stripping voltammetry for monitoring the lead concentration during its elimination. Journal of Electroanalytical Chemistry, 2014, 717-718, 213-218.	3.8	24
118	Electrochemical Technologies for Detecting and Degrading Benzoquinone Using Diamond Films. ChemElectroChem, 2019, 6, 4383-4390.	3 . 4	24
119	Anodic Oxidation as Green Alternative for Removing Diethyl Phthalate from Wastewater Using Pb/PbO ₂ and Ti/SnO ₂ Anodes. Clean - Soil, Air, Water, 2012, 40, 408-415.	1.1	23
120	Treatment of Amaranth dye in aqueous solution by using one cell or two cells in series with active and non-active anodes. Electrochimica Acta, 2016, 210, 96-104.	5. 2	23
121	Combination of Photoelectrocatalysis and Ozonation as a Good Strategy for Organics Oxidation and Decreased Toxicity in Oil-Produced Water. Journal of the Electrochemical Society, 2019, 166, H3231-H3238.	2.9	23
122	Anodic Oxidation of the Insecticide Imidacloprid on Mixed Metal Oxide (RuO ₂ -TiO ₂) Anodes. Journal of the Electrochemical Society, 2017, 164, E489-E495.	2.9	22
123	Long-chain phenols oxidation using a flow electrochemical reactor assembled with a TiO2-RuO2-IrO2 DSA electrode. Separation and Purification Technology, 2021, 264, 118425.	7.9	22
124	Improving the catalytic effect of peroxodisulfate and peroxodiphosphate electrochemically generated at diamond electrode by activation with light irradiation. Chemosphere, 2018, 207, 774-780.	8.2	21
125	Electro-Fenton catalyzed by Fe-rich lateritic soil for the treatment of food colorant Bordeaux Red (E123): Catalyst characterization, optimization of operating conditions and mechanism of oxidation. Separation and Purification Technology, 2020, 242, 116776.	7.9	21
126	Obtaining high-added value products from the technical cashew-nut shell liquid using electrochemical oxidation with BDD anodes. Separation and Purification Technology, 2020, 250, 117099.	7.9	20

#	Article	IF	CITATION
127	Determination of Trace Metals by Differential Pulse Voltammetry at Chitosan Modified Electrodes. Portugaliae Electrochimica Acta, 2010, 28, 39-49.	1.1	20
128	Study of produced water using hydrochemistry and multivariate statistics in different production zones of mature fields in the Potiguar Basin – Brazil. Journal of Petroleum Science and Engineering, 2014, 116, 109-114.	4.2	19
129	Cl-mediated electrochemical oxidation for treating an effluent using platinum and diamond anodes. Journal of Water Process Engineering, 2015, 8, e31-e36.	5.6	19
130	Iron mining wastes collected from Mariana disaster: Reuse and application as catalyst in a heterogeneous electro-Fenton process. Journal of Electroanalytical Chemistry, 2019, 848, 113330.	3.8	19
131	Clopyralid degradation by AOPs enhanced with zero valent iron. Journal of Hazardous Materials, 2020, 392, 122282.	12.4	19
132	Application of advanced oxidation processes for removing salicylic acid from synthetic wastewaters. Chinese Chemical Letters, 2010, 21, 101-104.	9.0	18
133	Understanding the behavior of caffeine on a boron-doped diamond surface: voltammetric, DFT, QTAIM and ELF studies. New Journal of Chemistry, 2017, 41, 7766-7774.	2.8	18
134	Coupling Photo and Sono Technologies with BDD Anodic Oxidation for Treating Soil-Washing Effluent Polluted with Atrazine. Journal of the Electrochemical Society, 2018, 165, E262-E267.	2.9	18
135	Integrated-electrochemical approaches powered by photovoltaic energy for detecting and treating paracetamol in water. Journal of Electroanalytical Chemistry, 2020, 876, 114734.	3.8	18
136	Persulfate-soil washing: The green use of persulfate electrochemically generated with diamond electrodes for depolluting soils. Journal of Electroanalytical Chemistry, 2021, 895, 115498.	3.8	18
137	Conductive diamond electrodes for water purification. Materials Research, 2007, 10, 419-424.	1.3	18
138	Ternary dimensionally stable anodes composed of RuO2 and IrO2 with CeO2, SnO2, or Sb2O3 for efficient naphthalene and benzene electrochemical removal. Journal of Applied Electrochemistry, 2017, 47, 547-561.	2.9	17
139	Evaluation of the toxicity reduction of an ionic liquid solution electrochemically treated using BDD films with different sp3/sp2 ratios. Electrochemistry Communications, 2020, 118, 106792.	4.7	17
140	Simultaneous determination of paracetamol and caffeine in pharmaceutical formulations and synthetic urine using cork-modified graphite electrodes. Journal of Solid State Electrochemistry, 2020, 24, 1789-1800.	2.5	17
141	Green Composite Sensor for Monitoring Hydroxychloroquine in Different Water Matrix. Materials, 2021, 14, 4990.	2.9	17
142	Understanding the electrochemical oxidation of dyes on platinum and boron–doped diamond electrode surfaces: experimental and computational study. Journal of Solid State Electrochemistry, 2020, 24, 3245-3256.	2.5	16
143	Applicability of Cork as Novel Modifiers to Develop Electrochemical Sensor for Caffeine Determination. Materials, 2021, 14, 37.	2.9	16
144	Effectiveness of <i>Croton cajucara</i> Benth on corrosion inhibition of carbon steel in saline medium. Materials and Corrosion - Werkstoffe Und Korrosion, 2013, 64, 530-534.	1.5	15

#	Article	IF	Citations
145	Cysteic Acidâ€Modified Glassy Carbon Electrode for Monitoring Oxalic Acid (OA) Concentration During Its Electrochemical Oxidation at Ti/Pt Anode. Electroanalysis, 2014, 26, 748-755.	2.9	15
146	Semi-Continuous Electrokinetic Dewatering of Phosphatic Clay Suspensions. Electrochimica Acta, 2014, 140, 438-446.	5 . 2	15
147	Large disk electrodes of Ti/TiO ₂ -nanotubes/PbO ₂ for environmental applications. RSC Advances, 2015, 5, 31454-31459.	3.6	15
148	Voltammetric Determination of Folic Acid Using a Graphite Paste Electrode. Electroanalysis, 2015, 27, 398-405.	2.9	15
149	Functional group influences on the reactive azo dye decolorization performance by electrochemical oxidation and electro-Fenton technologies. Environmental Science and Pollution Research, 2017, 24, 24167-24176.	5.3	15
150	Treatment of landfill leachate by a combined process: Iron electrodissolution, iron oxidation by H 2 O 2 and chemical flocculation. Sustainable Environment Research, 2018, 28, 12-19.	4.2	15
151	A sequential process to treat a cashew-nut effluent: Electrocoagulation plus electrochemical oxidation. Journal of Electroanalytical Chemistry, 2019, 834, 79-85.	3.8	15
152	Coupling of Anodic Oxidation and Soil Remediation Processes: A Review. Materials, 2020, 13, 4309.	2.9	15
153	Electro- and photo-electrooxidation of 2,4,5-trichlorophenoxiacetic acid (2,4,5-T) in aqueous media with PbO2, Sb-doped SnO2, BDD and TiO2-NTs anodes: A comparative study. Journal of Electroanalytical Chemistry, 2020, 873, 114438.	3.8	15
154	Electrochemical Determination of Lead Using A Composite Sensor Obtained from Low-Cost Green Materials:Graphite/Cork. Applied Sciences (Switzerland), 2021, 11, 2355.	2.5	15
155	Complementary Mechanism Model for the Electrochemical Mineralization. Current Organic Chemistry, 2012, 16, 1957-1959.	1.6	14
156	Inactivation, lysis and degradation by-products of Saccharomyces cerevisiae by electrooxidation using DSA. Environmental Science and Pollution Research, 2017, 24, 6096-6105.	5. 3	14
157	Cathodic hydrogen production by simultaneous oxidation of methyl red and 2,4-dichlorophenoxyacetate aqueous solutions using Pb/PbO ₂ , Ti/Sb-doped SnO ₂ and Si/BDD anodes. Part 1: electrochemical oxidation. RSC Advances, 2020, 10, 37695-37706.	3. 6	14
158	Metal Organic Frameworkâ€235 (MOFâ€235) Modified Carbon Paste Electrode for Catechol Determination in Water. Electroanalysis, 2021, 33, 57-65.	2.9	14
159	An overview of chelate modified electro-Fenton processes. Journal of Environmental Chemical Engineering, 2022, 10, 107183.	6.7	14
160	Efficiency and toxicity: comparison between the Fenton and electrochemical processes. Water Science and Technology, 2016, 74, 1143-1154.	2.5	13
161	Enhanced Degradation of the Industrial Textile Dye Disperse Red BG by Electrochemical Process with Different Anodes. Journal of the Electrochemical Society, 2017, 164, E440-E447.	2.9	13
162	Electrokinetic Treatment of Polluted Soil with Petroleum Coupled to an Advanced Oxidation Process for Remediation of Its Effluent. International Journal of Electrochemical Science, 2017, 12, 1247-1262.	1.3	13

#	Article	IF	Citations
163	Synthesis of Highly Functionalized N , N â€Diarylamides by an Anodic C, N â€Coupling Reaction. Chemistry - A European Journal, 2019, 25, 7835-7838.	3.3	13
164	Theoretical and experimental study of the influence of cation–Eriochrome complexes on the BDD anodic oxidation of Eriochrome Black T solutions. Electrochemistry Communications, 2020, 112, 106668.	4.7	13
165	Introductory editorial. International Journal of Sustainable Development, 2012, 15, 1.	0.2	12
166	Electrochemical treatment of shrimp farming effluent: role of electrocatalytic material. Environmental Science and Pollution Research, 2017, 24, 6061-6070.	5. 3	12
167	Electrochemical treatment of Produced Water using Ti/Pt and BDD anode. International Journal of Electrochemical Science, 2018, 13, 7894-7906.	1.3	12
168	Coupled Electrochemical Processes for Removing Dye from Soil and Water. Journal of the Electrochemical Society, 2018, 165, E318-E324.	2.9	12
169	Cathodic hydrogen production by simultaneous oxidation of methyl red and 2,4-dichlorophenoxyacetate in aqueous solutions using PbO ₂ , Sb-doped SnO ₂ and Si/BDD anodes. Part 2: hydrogen production. RSC Advances, 2020, 10, 37947-37955.	3.6	12
170	Understanding the electro-catalytic effect of benzene ring substitution on the electrochemical oxidation of aniline and its derivatives using BDD anode: Cyclic voltammetry, bulk electrolysis and theoretical calculations. Electrochimica Acta, 2021, 369, 137688.	5.2	12
171	Electrochemical oxidation of 2-chloroaniline in single and divided electrochemical flow cells using boron doped diamond anodes. Separation and Purification Technology, 2021, 263, 118399.	7.9	12
172	Opportunities and challenges of thin-film boron-doped diamond electrochemistry for valuable resources recovery from waste: Organic, inorganic, and volatile productÂelectrosynthesis. Current Opinion in Electrochemistry, 2022, 32, 100903.	4.8	12
173	Diamond Microelectrodes and their Applications in Biological Studies. Small, 2007, 3, 1474-1476.	10.0	11
174	The effect of type of self-assembled system and pH on the efficiency of corrosion inhibition of carbon-steel surfaces. Progress in Organic Coatings, 2013, 76, 1308-1315.	3.9	11
175	Development of a system for treatment of coconut industry wastewater using electrochemical processes followed by Fenton reaction. Water Science and Technology, 2014, 69, 2258-2264.	2.5	11
176	Methylene Blue decolorization and Mineralization by Means of Electrochemical Technology at Pre-pilot Plant Scale: Role of the Electrode Material and Oxidants. International Journal of Electrochemical Science, 2016, 11, 4878-4891.	1.3	11
177	Effect of lead dioxide high dispersion on titania nanotubes electrodes on the enhanced electrooxidation of aqueous p-nitrophenol and methyl red: An electrode comparative study. Journal of Electroanalytical Chemistry, 2017, 807, 261-267.	3 . 8	11
178	Electrocatalysis in Wastewater Treatment. , 2018, , 119-131.		11
179	Integrating ZVI-dehalogenation into an electrolytic soil-washing cell. Separation and Purification Technology, 2019, 211, 28-34.	7.9	11
180	Applicability of electroanalysis for monitoring oxalic acid (OA) concentration during its electrochemical oxidation. Journal of Electroanalytical Chemistry, 2013, 701, 32-35.	3.8	10

#	Article	IF	Citations
181	Towards Use of Persulfate Electrogenerated at Boron Doped Diamond Electrodes as Ex-Situ Oxidation Approach: Storage and Service-Life Solution Parameters. Journal of the Electrochemical Society, 2022, 169, 033506.	2.9	10
182	Application of electro-Fenton and photoelectro-Fenton processes for the degradation of contaminants in landfill leachate. Environmental Research, 2022, 213, 113552.	7.5	10
183	Charge-storage process in IrO 2 -SnO 2 mixed-oxide electrodes. Role of coating composition, solution pH and Temperature. Electrochimica Acta, 2014, 148, 85-92.	5.2	9
184	Application of electrochemical oxidation process to the degradation of the Novacron Blue dye using single and dual flow cells. Journal of Solid State Electrochemistry, 2016, 20, 2589-2597.	2.5	9
185	Trends of Organic Electrosynthesis by Using Boron-Doped Diamond Electrodes. Topics in Applied Physics, 2019, , 173-197.	0.8	9
186	Electrolysis with diamond anodes of the effluents of a combined soil washing – ZVI dechlorination process. Journal of Hazardous Materials, 2019, 369, 577-583.	12.4	9
187	A Boronâ€Doped Diamond Anode for the Electrochemical Removal of Parabens in Low onductive Solution: From a Conventional Flow Cell to a Solid Polymer Electrolyte System. ChemElectroChem, 2020, 7, 314-319.	3.4	9
188	Improving biotreatability of hazardous effluents combining ZVI, electrolysis and photolysis. Science of the Total Environment, 2020, 713, 136647.	8.0	9
189	Photoelectro-Fenton treatment of pesticide triclopyr at neutral pH using Fe(III)–EDDS under UVA light or sunlight. Environmental Science and Pollution Research, 2021, 28, 23833-23848.	5.3	9
190	The role of saline-related species in the electrochemical treatment of produced water using Ti/IrO2-Ta2O5 anode. Journal of Electroanalytical Chemistry, 2022, 910, 116163.	3.8	9
191	The Use of Diamond for Energy Conversion System Applications: A Review. International Journal of Electrochemistry, 2012, 2012, 1-20.	2.4	8
192	Indirect Electrochemical Oxidation by Using Ozone, Hydrogen Peroxide, and Ferrate., 2018,, 165-192.		8
193	<i>Hibiscus sabdariffa</i> L. Anthocyanins Immobilization on TiO ₂ ÂNanotubes and Its Electrochemical Characterization as a Hydrogen Peroxide Sensing Electrode. Journal of the Electrochemical Society, 2019, 166, B1506-B1512.	2.9	8
194	Photocatalytic degradation of Novacron blue and Novacron yellow textile dyes by the TiO2/palygorskite nanocomposite. Environmental Science and Pollution Research, 2021, 28, 64440-64460.	5.3	8
195	Electro catalytic generation of reactive species at diamond electrodes and applications in microbial inactivation. Current Opinion in Electrochemistry, 2021, 30, 100849.	4.8	8
196	New Trends on the Boron-Doped Diamond Electrode: From Fundamental Studies to Applications. International Journal of Electrochemistry, 2012, 2012, 1-2.	2.4	7
197	Applicability of Electroanalysis for Monitoring Oxalic Acid (OA) Concentration During its Electrochemical Oxidation at Different Electrode Materials. Electrocatalysis, 2013, 4, 267-273.	3.0	7
198	Electrochemical treatment of real petrochemical effluent: current density effect and toxicological tests. Water Science and Technology, 2020, 82, 2304-2315.	2.5	7

#	Article	IF	Citations
199	Decolorization of Synthetic Azo Dyes by Electrochemically Generated •OH Radicals in Acidic Medium using Boron Doped Diamond (BDD) Electrodes. ECS Transactions, 2009, 20, 283-290.	0.5	6
200	Cashew-Nut Effluent: An Anodic Oxidation Treatment Using a Batch Recirculation Reactor with BDD Anode. Journal of the Electrochemical Society, 2018, 165, E659-E664.	2.9	6
201	Real time monitoring of in situ generated hydrogen peroxide in electrochemical advanced oxidation reactors using an integrated Pt microelectrode. Talanta, 2020, 218, 121133.	5.5	6
202	Promoting the formation of Co (III) electrocatalyst with diamond anodes. Journal of Electroanalytical Chemistry, 2021, 882, 115007.	3.8	6
203	Environment-Friendly Electrochemical Processes. Materials, 2021, 14, 1548.	2.9	6
204	Comparison of the performance of packed column and jet electro-scrubbers for the removal of toluene. Journal of Environmental Chemical Engineering, 2021, 9, 106114.	6.7	6
205	Theoretical studies of dimers and properties of the corrosion inhibitor profile for semicarbazones and thiosemicarbazones. Journal of Molecular Liquids, 2021, 343, 117660.	4.9	6
206	Application of Combined Electrochemical Approaches for Removing/ Determining Cr(VI). Current Analytical Chemistry, 2017, 13, 202-209.	1.2	6
207	Platinum Sensor for Quantifying Caffeine in Drug Formulations. Current Pharmaceutical Analysis, 2014, 10, 231-238.	0.6	6
208	The versatile behavior of diamond electrodes â€" Electrochemical examination of the anti-psychotic drug olanzapine (OL) oxidation as a model organic aqueous solution. Electrochimica Acta, 2022, , 140063.	5.2	6
209	Electrochemical behaviour of platinum at polymer-modified glassy carbon electrodes. Journal of Chemical Sciences, 2007, 119, 283-288.	1.5	5
210	Determination of calcium content in tablets for treatment of osteoporosis using thermogravimetry (TG). Journal of Thermal Analysis and Calorimetry, 2013, 111, 1965-1970.	3.6	5
211	Electrochemical mediated oxidation of phenol using Ti/IrO2 and Ti/Pt-SnO2-Sb2O5 electrodes. Journal of Electrochemical Science and Engineering, 2014, 4, .	3.5	5
212	Electrocatalytic Behavior of Mediators during Anodic Oxidation of Tartaric Acid at Platinum Electrodes. Journal of the Electrochemical Society, 2017, 164, E375-E378.	2.9	5
213	Applicability of Electrochemical Technology for Treating a Real Petrochemical Effluent by Electro-generated Active Chlorine Species. International Journal of Electrochemical Science, 2020, , 10262-10275.	1.3	5
214	Metal-organic Framework-Modified Carbon Paste Electrode for Determining Lead in Aqueous Solutions. International Journal of Electrochemical Science, 2020, 15, 10081-10092.	1.3	5
215	Treatment of toluene gaseous streams using packed column electro-scrubbers and cobalt mediators. Journal of Electroanalytical Chemistry, 2021, 895, 115500.	3.8	5
216	Achieving Electrochemical-Sustainable-Based Solutions for Monitoring and Treating Hydroxychloroquine in Real Water Matrix. Applied Sciences (Switzerland), 2022, 12, 699.	2.5	5

#	Article	IF	Citations
217	Anodic Oxidation of Tartaric Acid at Different Electrode Materials. Current Organic Chemistry, 2012, 16, 1951-1956.	1.6	4
218	Scale-up on Electrokinetic Treatment of Polluted Soil with Petroleum: Effect of Operating Conditions. International Journal of Electrochemical Science, 2017, 12, 4001-4015.	1.3	4
219	Fe/SBA-15: Characterization and its application to a heterogeneous solar photo-Fenton process in order to decolorize and mineralize an azo dye. Materials Letters: X, 2020, 5, 100034.	0.7	4
220	Electroscrubbers for removing volatile organic compounds and odorous substances from polluted gaseous streams. Current Opinion in Electrochemistry, 2021, 28, 100718.	4.8	4
221	Cobalt mediated electro-scrubbers for the degradation of gaseous perchloroethylene. Chemosphere, 2021, 279, 130525.	8.2	4
222	Determination of calcium in tablets containing calcium citrate using thermogravimetry (TG). Brazilian Journal of Thermal Analysis, 2014, 2, 17.	0.0	4
223	Distribution of Nitrogen Ions Generated in the Electrochemical Oxidation of Nitrogen Containing Organic Compounds. Portugaliae Electrochimica Acta, 2009, 27, 203-213.	1.1	4
224	Electrochemical Degradation of a Commercial Formulation of the Insecticide Pyriproxyfen Using Boron-Doped Diamond Anode. Journal of the Electrochemical Society, 2020, 167, 146510.	2.9	4
225	An Electroanalytical Solution for the Determination of Pb2+ in Progressive Hair Dyes Using the Cork–Graphite Sensor. Sensors, 2022, 22, 1466.	3.8	4
226	Editorial overview: Electrochemical technologies for wastewater treatment with a bright future in the forthcoming years to benefit of our society. Current Opinion in Electrochemistry, 2021, 30, 100905.	4.8	4
227	Corkâ€based permeable reactive barriers coupled to electrokinetic processes for interrupting pollutants reaching groundwater: a case study of leadâ€contaminated soil. Journal of Chemical Technology and Biotechnology, 2022, 97, 2861-2870.	3.2	4
228	Conductive-synthetic diamond materials in meeting the sustainable development goals. Current Opinion in Solid State and Materials Science, 2022, 26, 101019.	11.5	4
229	Determinação do teor de cálcio em comprimido à base de lactato de cálcio utilizado no tratamento da osteoporose. Quimica Nova, 2012, 35, 1355-1359.	0.3	3
230	Continuous electro-scrubbers for the removal of perchloroethylene: Keys for selection. Journal of Electroanalytical Chemistry, 2021, 892, 115267.	3.8	3
231	Dithiobiurets as Corrosion Inhibitors for Copper in 3.5% NaCl Solution. Portugaliae Electrochimica Acta, 2010, 28, 51-62.	1.1	3
232	Electrochemical Treatment of Real Textile Industrial Effluent Using Diamond Electrode. ECS Transactions, 2012, 43, 143-150.	0.5	2
233	Electrochemical Decolourization Process of Textile Dye in the Presence of NaCl at BDD and Ti/Pt Electrode. ECS Transactions, 2012, 43, 127-134.	0.5	2
234	Electrochemical Oxidation of Oxalic Acid at Different Anode Materials: Applicability of Electroanalysis for Monitoring OA Degradation. ECS Transactions, 2012, 43, 353-361.	0.5	2

#	Article	IF	CITATIONS
235	Electrocoagulación de soluciones de Ãndigo carmÃn empleando ánodos de magnesio y de aleación AZ31. DYNA (Colombia), 2018, 85, 258-267.	0.4	2
236	Trends in Synthetic Diamond for Electrochemical Applications. ChemElectroChem, 2019, 6, 4330-4331.	3.4	2
237	Modelling electro-scrubbers for removal of VOCs. Separation and Purification Technology, 2021, 277, 119419.	7.9	2
238	USO DE PRÓPOLIS NO DESENVOLVIMENTO DE RESINAS DENTÂRIAS: UM ESTUDO PROSPECTIVO. Cadernos De Prospecção, 2017, 10, 285.	0.1	2
239	Application of Electrochemical Technology for Water Treatment of Brazilian Industry Effluents. Journal of the Mexican Chemical Society, 2017, 58, .	0.6	2
240	Titanium oxide supported on montmorillonite clays for environmental applications. Journal of the Mexican Chemical Society, 2019, 63, .	0.6	2
241	The Green Use of Persulfate Electrochemically Generated with Diamond Electrodes for Depolluting Soils. ECS Meeting Abstracts, 2021, MA2021-02, 1530-1530.	0.0	2
242	Electrochemical oxidation for treating effluents from cashew nut processing using batch reactors. Journal of Electroanalytical Chemistry, 2022, 911, 116224.	3.8	2
243	Introductory Editorial. Air, Soil and Water Research, 2008, 1, 117862210800100.	2.5	1
244	Modified Diamond Electrodes for Electrochemical Systems for Energy Conversion and Storage. Topics in Applied Physics, 2015, , 205-235.	0.8	1
245	XXI Brazilian Symposium of Electrochemistry and Electroanalysis (XXI SIBEEâ€"SimpĂ³sio Brasileiro de) Tj ETQq1 Electrochemistry, 2018, 22, 1275-1276.	1 0.78431- 2.5	
246	BDD-Electrolysis of Oxalic Acid in Diluted Acidic Solutions. Journal of the Brazilian Chemical Society, 2019, , .	0.6	1
247	Coupling of Anodic Oxidation and Soil Remediation Processes. Environmental Pollution, 2021, , 199-219.	0.4	1
248	Advanced oxidation/reduction technologies: a perspective from Iberoamerican countries. Environmental Science and Pollution Research, 2021, 28, 23565-23567.	5.3	1
249	Use of Combined Electrochemical Approaches for Mineralization and Detection of Hydroquinone Using PbO2 Electrodes. Journal of the Mexican Chemical Society, 2017, 58, .	0.6	1
250	ELECTROCHEMICAL INCINERATION OF SHORT-CHAIN CARBOXYLIC ACIDS WITH NB-SUPPORTED BORON DOPED DIAMOND ANODE: SUPPORTING ELECTROLYTE EFFECT INTO THE ELECTROGENERATED OXIDANT SPECIES (HYDROXYL RADICALS, HYDROGEN PEROXIDE AND PERSULFATE). Quimica Nova, 2020, , .	0.3	1
251	Towards Sustainability: Photochemical and Electrochemical Processes Applied for Environmental Protection. International Journal of Photoenergy, 2018, 2018, 1-3.	2.5	O
252	Diamond Films as Support for Electrochemical Systems for Energy Conversion and Storage. Topics in Applied Physics, 2019, , 199-222.	0.8	0

#	Article	IF	CITATIONS
253	OXIDAÇÃ f O ANÓDICA PARA DESCONTAMINAÇÃ f O DE UM EFLUENTE CONTAMINADO COM O HERBICIDA GLIFOSATO UTILIZANDO ANODO DE DIAMANTE DOPADO COM BORO. Quimica Nova, 0, , .	0.3	0
254	Effectiveness of Anacardium occidentaleon a Microemulsion System in the Carbon Steel Corrosion Inhibition. Revista Virtual De Quimica, 2013, 5, .	0.4	0
255	Organic Pollutants in Water Using BDD, Direct and Indirect Electrochemical Oxidation. , 2014, , 1402-1407.		0
256	Application of Advanced Oxidation Methods for Water Disinfection. Revista Virtual De Quimica, 2015, 7, .	0.4	0
257	USO DE ÓXIDOS DE METAIS DE TRANSIÇÃO NA CATÃŁISE DA REAÇÃO DE FENTON. Cadernos De ProspecÃ 2016, 9, 238.	§Ã£o.	0
258	Integrated-electrochemical Approaches Powered by Photovoltaic Energy for Detecting and Treating Hydroxychloroquine in Water. ECS Meeting Abstracts, 2021, MA2021-02, 1529-1529.	0.0	0