Takashi Niwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5367581/publications.pdf

Version: 2024-02-01

315739 471509 1,463 41 17 38 citations h-index g-index papers 63 63 63 1413 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Structure-activity relationship for the folding intermediate-selective inhibition of DYRK1A. European Journal of Medicinal Chemistry, 2022, 227, 113948.	5.5	6
2	Clinical evaluation of [18F]pitavastatin for quantitative analysis of hepatobiliary transporter activity. Drug Metabolism and Pharmacokinetics, 2022, 44, 100449.	2.2	3
3	Expression and purification of DYRK1A kinase domain in complex with its folding intermediate-selective inhibitor FINDY. Protein Expression and Purification, 2022, 195-196, 106089.	1.3	1
4	Azido-type-selective triazole formation by iridium-catalyzed cycloaddition with thioalkynes. Chemical Communications, 2022, , .	4.1	4
5	Convergent Synthesis of Fluoroalkenes Using a Dual-Reactive Unit. Journal of Organic Chemistry, 2021, 86, 1622-1632.	3.2	7
6	Direct 3-Acylation of Indolizines by Carboxylic Acids for the Practical Synthesis of Red Light-Releasable Caged Carboxylic Acids. Journal of Organic Chemistry, 2021, 86, 11822-11834.	3.2	8
7	Lewis acid-mediated Suzuki–Miyaura cross-coupling reaction. Nature Catalysis, 2021, 4, 1080-1088.	34.4	19
8	Molecular Renovation Strategy for Expeditious Synthesis of Molecular Probes. Bulletin of the Chemical Society of Japan, 2020, 93, 230-248.	3.2	13
9	Quantification of aromatase binding in the female human brain using [¹¹ C]cetrozole positron emission tomography. Journal of Neuroscience Research, 2020, 98, 2208-2218.	2.9	5
10	Indolizines Enabling Rapid Uncaging of Alcohols and Carboxylic Acids by Red Light-Induced Photooxidation. Organic Letters, 2020, 22, 5434-5438.	4.6	15
11	Practical Synthesis of [¹⁸ F]Pitavastatin and Evaluation of Hepatobiliary Transport Activity in Rats by Positron Emission Tomography. Molecular Pharmaceutics, 2020, 17, 1884-1898.	4.6	1
12	Synthesis of (2,2-Diborylvinyl)arenes by Rhodium-Catalyzed Desulfanylative <i>gem</i> -Diborylation of 2-Arylvinyl Sulfides. Organic Letters, 2019, 21, 4933-4938.	4.6	12
13	Defluoroborylation Reactions of Fluoroarenes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 883-894.	0.1	5
14	Divergent Synthesis of Photoaffinity Probe Candidates by Click Reactions of Azido-Substituted Aryltrifluoromethyldiazirines. Heterocycles, 2019, 99, 1366.	0.7	1
15	Quantification of receptor activation by oxytocin and vasopressin in endocytosis-coupled bioluminescence reduction assay using nanoKAZ. Analytical Biochemistry, 2018, 549, 174-183.	2.4	3
16	Palladium(ii)-mediated rapid 11C-cyanation of (hetero)arylborons. Organic and Biomolecular Chemistry, 2018, 16, 7711-7716.	2.8	14
17	Rhodiumâ€Catalyzed Decarbonylative Borylation of Aromatic Thioesters for Facile Diversification of Aromatic Carboxylic Acids. Angewandte Chemie, 2017, 129, 2522-2526.	2.0	24
18	Rhodiumâ€Catalyzed Decarbonylative Borylation of Aromatic Thioesters for Facile Diversification of Aromatic Carboxylic Acids. Angewandte Chemie - International Edition, 2017, 56, 2482-2486.	13.8	89

#	Article	lF	CITATIONS
19	Copper-Catalyzed <i>ipso</i> -Borylation of Fluoroarenes. ACS Catalysis, 2017, 7, 4535-4541.	11.2	55
20	Copper-Catalyzed Regioselective Monodefluoroborylation of Polyfluoroalkenes en Route to Diverse Fluoroalkenes. Journal of the American Chemical Society, 2017, 139, 12855-12862.	13.7	212
21	Facile Transformation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carboxylic Acids to Alkenylboronic Esters via Rhodium-catalyzed Decarbonylative Borylation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Thioesters. Chemistry Letters, 2017, 46, 1315-1318.	1.3	23
22	Development of Small Molecule-Based PET Probes. Nippon Laser Igakkaishi, 2017, 37, 465-472.	0.0	0
23	Rhodium-Catalyzed <i>ipso</i> -Borylation of Alkylthioarenes via C–S Bond Cleavage. Organic Letters, 2016, 18, 2758-2761.	4.6	89
24	Stereoinversion of Stereocongested Carbocyclic Alcohols via Triflylation and Subsequent Treatment with Aqueous N,N-Dimethylformamide. Organic Letters, 2016, 18, 5982-5985.	4.6	10
25	Synthesis and characterization of a new C2-symmetrical chiral tridentate N-heterocyclic carbene ligand coordinated Cr(III) complex. Tetrahedron: Asymmetry, 2015, 26, 158-162.	1.8	7
26	Highly enantioselective catalytic asymmetric Mukaiyama–Michael reactions of cyclic α-alkylidene β-oxo imides. Tetrahedron: Asymmetry, 2015, 26, 262-270.	1.8	12
27	Ni/Cu-Catalyzed Defluoroborylation of Fluoroarenes for Diverse C–F Bond Functionalizations. Journal of the American Chemical Society, 2015, 137, 14313-14318.	13.7	177
28	Synthesis of cycloalkanone-fused cyclopropanes by Au(I)-catalyzed oxidative ene-yne cyclizations. Tetrahedron Letters, 2014, 55, 6847-6850.	1.4	17
29	PREPARATION OF IMIDES VIA THE PALLADIUM-CATALYZED COUPLING REACTION OF ORGANOSTANNANES WITH METHYL N-[METHOXY(METHYLTHIO)METHYLENE]CARBAMATE. Heterocycles, 2013, 87, 827.	0.7	8
30	Catalytic Asymmetric [4 + 2] Cycloadditions and Hosomi–Sakurai Reactions of α-Alkylidene β-Keto Imides. Organic Letters, 2013, 15, 768-771.	4.6	40
31	Preparation of Imides via the Palladium-Catalyzed Coupling Reaction of Organoborons with Methyl $\langle i \rangle N \langle i \rangle - [Methoxy(methylthio)methylene] carbamate as a One-Carbon Elongation Reaction. Organic Letters, 2012, 14, 6294-6297.$	4.6	23
32	A Non-Heme Iron(III) Complex with Porphyrin-like Properties That Catalyzes Asymmetric Epoxidation. Journal of the American Chemical Society, 2012, 134, 13538-13541.	13.7	87
33	Pd-catalyzed reductive cleavage of alkyl aryl sulfides with triethylsilane that is accelerated by trialkylsilyl chloride. Tetrahedron Letters, 2012, 53, 4313-4316.	1.4	42
34	Synthetic Organic Reactions with Photoredox Catalysis and Visible Light. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 1307-1308.	0.1	2
35	Palladium-catalyzed benzylic direct arylation of benzyl sulfones with aryl halides. Tetrahedron, 2009, 65, 1971-1976.	1.9	41
36	Carbon–carbon bond formations at the benzylic positions of N-benzylxanthone imines and N-benzyldi-1-naphthyl ketone imine. Tetrahedron, 2009, 65, 5125-5131.	1.9	37

3

#	Article	IF	CITATIONS
37	Palladiumâ€Catalyzed (<i>N</i> à€Oxidoâ€2â€pyridinyl)methyl Transfer from 2â€(2â€Hydroxyalkyl)pyridine <i>N</i> â€Oxide to Aryl Halides by βâ€Carbon Elimination. Chemistry - an Asian Journal, 2009, 4, 1217-1220.	3.3	17
38	Palladium-Catalyzed Benzylic Arylation of $\langle i \rangle N \langle i \rangle$ -Benzylxanthone Imine. Organic Letters, 2008, 10, 4689-4691.	4.6	57
39	Palladium-Catalyzed Direct Arylation of Aryl(azaaryl)methanes with Aryl Halides Providing Triarylmethanes. Organic Letters, 2007, 9, 2373-2375.	4.6	143
40	Palladium-Catalyzed 2-Pyridylmethyl Transfer from 2-(2-Pyridyl)ethanol Derivatives to Organic Halides by Chelation-Assisted Cleavage of Unstrained Csp3Csp3 Bonds. Angewandte Chemie - International Edition, 2007, 46, 2643-2645.	13.8	107
41	Palladium-Catalyzed 2-Pyridylmethyl Transfer from 2-(2-Pyridyl)ethanol Derivatives to Organic Halides by Chelation-Assisted Cleavage of Unstrained C sp 3C sp 3 Bonds. Angewandte Chemie, 20 2697-2699.	072.b19,	22