List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5367521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 2003, 108, .	3.3	8,242
2	ICOADS Release 2.5: extensions and enhancements to the surface marine meteorological archive. International Journal of Climatology, 2011, 31, 951-967.	1.5	407
3	Observations: Atmosphere and Surface. , 2014, , 159-254.		350
4	New Insights into the Ocean Heat Budget Closure Problem from Analysis of the SOC Air–Sea Flux Climatology. Journal of Climate, 1999, 12, 2856-2880.	1.2	300
5	ICOADS Release 3.0: a major update to the historical marine climate record. International Journal of Climatology, 2017, 37, 2211-2232.	1.5	288
6	A New Air–Sea Interaction Gridded Dataset from ICOADS With Uncertainty Estimates. Bulletin of the American Meteorological Society, 2009, 90, 645-656.	1.7	164
7	Air-Sea Fluxes With a Focus on Heat and Momentum. Frontiers in Marine Science, 2019, 6, .	1.2	111
8	The Accuracy of Voluntary Observing Ships' Meteorological Observations-Results of the VSOP-NA. Journal of Atmospheric and Oceanic Technology, 1993, 10, 591-608.	0.5	110
9	Metadata from WMO Publication No. 47 and an Assessment of Voluntary Observing Ship Observation Heights in ICOADS. Journal of Atmospheric and Oceanic Technology, 2007, 24, 214-234.	0.5	91
10	Air–Sea fluxes from ICOADS: the construction of a new gridded dataset with uncertainty estimates. International Journal of Climatology, 2011, 31, 987-1001.	1.5	89
11	Wind Stress Forcing of the Ocean in the SOC Climatology: Comparisons with the NCEP–NCAR, ECMWF, UWM/COADS, and Hellerman and Rosenstein Datasets. Journal of Physical Oceanography, 2002, 32, 1993-2019.	0.7	87
12	Toward an Integrated Set of Surface Meteorological Observations for Climate Science and Applications. Bulletin of the American Meteorological Society, 2017, 98, 2689-2702.	1.7	80
13	A 20Âyear independent record of sea surface temperature for climate from Alongâ€Track Scanning Radiometers. Journal of Geophysical Research, 2012, 117, .	3.3	77
14	Methods to homogenize wind speeds from ships and buoys. International Journal of Climatology, 2005, 25, 979-995.	1.5	75
15	Trends in ship wind speeds adjusted for observation method and height. International Journal of Climatology, 2008, 28, 747-763.	1.5	72
16	A Call for New Approaches to Quantifying Biases in Observations of Sea Surface Temperature. Bulletin of the American Meteorological Society, 2017, 98, 1601-1616.	1.7	69
17	Global analysis of night marine air temperature and its uncertainty since 1880: The HadNMAT2 data set. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1281-1298.	1.2	62
18	A comparative assessment of monthly mean wind speed products over the global ocean. International Journal of Climatology, 2013, 33, 2520-2541.	1.5	60

#	Article	IF	CITATIONS
19	Guiding the Creation of A Comprehensive Surface Temperature Resource for Twenty-First-Century Climate Science. Bulletin of the American Meteorological Society, 2011, 92, ES40-ES47.	1.7	59
20	Toward Estimating Climatic Trends in SST. Part I: Methods of Measurement. Journal of Atmospheric and Oceanic Technology, 2006, 23, 464-475.	0.5	55
21	Were extreme waves in the Rockall Trough the largest ever recorded?. Geophysical Research Letters, 2006, 33, .	1.5	54
22	A Statistical Determination of the Random Observational Errors Present in Voluntary Observing Ships Meteorological Reports. Journal of Atmospheric and Oceanic Technology, 1999, 16, 905-914.	0.5	51
23	Correcting datasets leads to more homogeneous early-twentieth-century sea surface warming. Nature, 2019, 571, 393-397.	13.7	51
24	Deriving a sea surface temperature record suitable for climate change research from the along-track scanning radiometers. Advances in Space Research, 2008, 41, 1-11.	1.2	47
25	Choice of a Beaufort Equivalent Scale. Journal of Atmospheric and Oceanic Technology, 1997, 14, 228-242.	0.5	45
26	Quantifying random measurement errors in Voluntary Observing Ships' meteorological observations. International Journal of Climatology, 2005, 25, 843-856.	1.5	45
27	BoBBLE: Ocean–Atmosphere Interaction and Its Impact on the South Asian Monsoon. Bulletin of the American Meteorological Society, 2018, 99, 1569-1587.	1.7	45
28	An Analytical Model of Heating Errors in Marine Air Temperatures from Ships. Journal of Atmospheric and Oceanic Technology, 2004, 21, 1198-1215.	0.5	42
29	Toward Estimating Climatic Trends in SST. Part III: Systematic Biases. Journal of Atmospheric and Oceanic Technology, 2006, 23, 487-500.	0.5	38
30	Toward Estimating Climatic Trends in SST. Part II: Random Errors. Journal of Atmospheric and Oceanic Technology, 2006, 23, 476-486.	0.5	37
31	Global Climate. Bulletin of the American Meteorological Society, 2021, 102, S11-S142.	1.7	36
32	Effects of instrumentation changes on sea surface temperature measured <i>in situ</i> . Wiley Interdisciplinary Reviews: Climate Change, 2010, 1, 718-728.	3.6	35
33	Ship-Based Contributions to Global Ocean, Weather, and Climate Observing Systems. Frontiers in Marine Science, 2019, 6, .	1.2	34
34	Constraining Southern Ocean Air-Sea-Ice Fluxes Through Enhanced Observations. Frontiers in Marine Science, 2019, 6, .	1.2	31
35	Correction of Marine Air Temperature Observations for Solar Radiation Effects. Journal of Atmospheric and Oceanic Technology, 1993, 10, 900-906.	0.5	28
36	Climatological diurnal variability in sea surface temperature characterized from drifting buoy data. Geoscience Data Journal, 2016, 3, 20-28.	1.8	26

#	Article	IF	CITATIONS
37	Estimating Sea Surface Temperature Measurement Methods Using Characteristic Differences in the Diurnal Cycle. Geophysical Research Letters, 2018, 45, 363-371.	1.5	25
38	Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science, 2019, 6, .	1.2	25
39	A probabilistic approach to ship voyage reconstruction in <scp>ICOADS</scp> . International Journal of Climatology, 2017, 37, 2233-2247.	1.5	23
40	The effect of instrument exposure on marine air temperatures: an assessment using VOSClim Data. International Journal of Climatology, 2005, 25, 1007-1022.	1.5	22
41	The Evolving SST Record from ICOADS. , 2008, , 65-83.		22
42	The Voluntary Observing Ship (VOS) Scheme. , 2010, , .		22
43	A comparison of oceanic skin effect parameterizations using shipborne radiometer data. Journal of Geophysical Research, 1996, 101, 16649-16666.	3.3	21
44	A comparison of ship- and scatterometer-derived wind speed data in open ocean and coastal areas. International Journal of Remote Sensing, 1998, 19, 3361-3381.	1.3	21
45	The International Comprehensive Ocean-Atmosphere Data Set – Meeting Users Needs and Future Priorities. Frontiers in Marine Science, 2019, 6, .	1.2	21
46	Can a state of the art atmospheric general circulation model reproduce recent NAO related variability at the air-sea interface?. Geophysical Research Letters, 2001, 28, 4543-4546.	1.5	19
47	A Comparison of Sensible and Latent Heat Flux Estimates for the North Atlantic Ocean. Journal of Physical Oceanography, 1995, 25, 1530-1549.	0.7	18
48	The EUSTACE Project: Delivering Global, Daily Information on Surface Air Temperature. Bulletin of the American Meteorological Society, 2020, 101, E1924-E1947.	1.7	18
49	Seasonal variations between sampling and classical mean turbulent heat flux estimates in the eastern North Atlantic. Annales Geophysicae, 1995, 13, 1054-1064.	0.6	17
50	Intraseasonal Variability of Air–Sea Fluxes over the Bay of Bengal during the Southwest Monsoon. Journal of Climate, 2018, 31, 7087-7109.	1.2	17
51	Integrating the Ocean Observing System: Mobile Platforms. , 2010, , .		17
52	The Importance of Unresolved Biases in Twentieth-Century Sea Surface Temperature Observations. Bulletin of the American Meteorological Society, 2019, 100, 621-629.	1.7	15
53	Historical Estimates of Surface Marine Temperatures. Annual Review of Marine Science, 2021, 13, 283-311.	5.1	15
54	Accuracy of Humidity Measurement on Ships: Consideration of Solar Radiation Effects. Journal of Atmospheric and Oceanic Technology, 1996, 13, 1317-1321.	0.5	14

#	Article	IF	CITATIONS
55	Assessing the health of the <i>in situ</i> global surface marine climate observing system. International Journal of Climatology, 2017, 37, 2248-2259.	1.5	14
56	A comparison of SSM/I-derived global marine surface-specific humidity datasets. International Journal of Climatology, 2015, 35, 2359-2381.	1.5	13
57	Progress towards a holistic land and marine surface meteorological database and a call for additional contributions. Geoscience Data Journal, 2021, 8, 103-120.	1.8	12
58	MEETING SUMMARIES. Bulletin of the American Meteorological Society, 2007, 88, 559-568.	1.7	11
59	A comparison of global marine surfaceâ€specific humidity datasets from in situ observations and atmospheric reanalysis. International Journal of Climatology, 2014, 34, 355-376.	1.5	11
60	The Effect of Successive Correction on Variability Estimates for Climatological Datasets. Journal of Climate, 2000, 13, 1845-1857.	1.2	10
61	Recent Change—Atmosphere. Regional Climate Studies, 2016, , 55-84.	1.2	10
62	Recent Change—North Sea. Regional Climate Studies, 2016, , 85-136.	1.2	9
63	Measurements and models of the temperature change of water samples in seaâ€surface temperature buckets. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2198-2209.	1.0	8
64	CLASSnmat: A global night marine air temperature data set, 1880–2019. Geoscience Data Journal, 2020, 7, 170-184.	1.8	7
65	An Estimate of Structural Uncertainty in QuikSCAT Wind Vector Retrievals. Journal of Applied Meteorology and Climatology, 2012, 51, 954-961.	0.6	5
66	From Observations to Forecasts - Part 6. Marine meteorological observations. Weather, 2010, 65, 231-238.	0.6	2
67	Accounting for random errors in linear regression: A practical guide. Quarterly Journal of the Royal Meteorological Society, 1999, 125, 2789-2790.	1.0	1