
Murugan Ramaswamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5366123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review—Microstructural Modification in Lithium Garnet Solid-State Electrolytes: Emerging Trends. Journal of the Electrochemical Society, 2022, 169, 030548.	2.9	5
2	Plasma assisted decomposition and reforming of greenhouse gases: A review of current status and emerging trends. Renewable and Sustainable Energy Reviews, 2022, 161, 112343.	16.4	18
3	Effect of vacancy defects on electronic structure and ferromagnetism in pristine In2O3 nanostructures: An experimental study and first-principles modeling. Materials Research Bulletin, 2022, 152, 111853.	5.2	1
4	Genesis and tuning of ferromagnetism in SnO2 semiconductor nanostructures: Comprehensive review on size, morphology, magnetic properties and DFT investigations. Progress in Materials Science, 2022, 130, 100970.	32.8	13
5	Morphology controlled synthesis of Fe and Mn co-doped In2O3 nanocubes and their Dopant-Atom effects on electronic structure and magnetic properties. Journal of Magnetism and Magnetic Materials, 2022, 560, 169547.	2.3	5
6	A brief review of recent advances in garnet structured solid electrolyte based lithium metal batteries. Journal of Energy Storage, 2021, 33, 102157.	8.1	48
7	Advances in Electrolytes for High Capacity Rechargeable Lithium-Sulphur Batteries. Current Smart Materials, 2021, 5, 3-37.	0.5	7
8	Electrochemical characteristics of Ge incorporated Li4Ti5O12 as an anode for Li-ion battery applications. Materials Today Communications, 2021, 27, 102273.	1.9	6
9	Review on the critical issues for the realization of all-solid-state lithium metal batteries with garnet electrolyte: interfacial chemistry, dendrite growth, and critical current densities. Ionics, 2021, 27, 4105-4126.	2.4	24
10	Lithium garnet-cathode interfacial chemistry: inclusive insights and outlook towardÂpractical solid-state lithium metal batteries. Materials Today Energy, 2021, 21, 100804.	4.7	23
11	Polymer-garnet composite electrolyte based on comb-like structured polymer for lithium-metal batteries. Materials Today Energy, 2021, 21, 100836.	4.7	14
12	Development of stable and conductive interface between garnet structured solid electrolyte and lithium metal anode for high performance solid-state battery. Electrochimica Acta, 2020, 332, 135511.	5.2	38
13	Interface-Compatible and High-Cyclability Lithiophilic Lithium–Zinc Alloy Anodes for Garnet-Structured Solid Electrolytes. ACS Applied Energy Materials, 2020, 3, 9010-9017.	5.1	33
14	Investigation on electronic structure and magnetic properties of Co and Mn incorporated nanoscale SnO2. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	6
15	Room temperature magnetoelectric coupling in Fe-doped sodium bismuth titanate ceramics. Journal of Alloys and Compounds, 2020, 830, 154679.	5.5	15
16	Origin and control of room temperature ferromagnetism in Co,Zn-doped SnO ₂ : oxygen vacancies and their local environment. Journal of Materials Chemistry C, 2020, 8, 4902-4908.	5.5	6
17	Emerging scenario on displacive cubic bismuth pyrochlores (Bi,M)MNO7-δ (M = transition metal, N = Nb,) Tj ETQ International, 2020, 46, 14346-14360.	q1 1 0.784 4.8	1314 rgBT /0 11
18	Lithium garnet incorporated 3D electrospun fibrous membrane for high capacity lithium-metal batteries. Materials Today Energy, 2020, 16, 100389.	4.7	16

#	Article	IF	CITATIONS
19	Higher Critical Current Density in Lithium Garnets at Room Temperature by Incorporation of an Li ₄ SiO ₄ -Related Glassy Phase and Hot Isostatic Pressing. ACS Applied Energy Materials, 2020, 3, 2737-2743.	5.1	16
20	Realization of room temperature lithium metal battery with high Li+ conductive lithium garnet solid electrolyte. Ceramics International, 2019, 45, 22610-22616.	4.8	24
21	Room temperature magnetoelectric coupling and relaxor-like multiferroic nature in a biphase of cubic pyrochlore and spinel. Journal of Applied Physics, 2019, 126, 044103.	2.5	6
22	Metal Coated Polypropylene Separator with Enhanced Surface Wettability for High Capacity Lithium Metal Batteries. Scientific Reports, 2019, 9, 16795.	3.3	30
23	XANES, EXAFS, EPR, and First-Principles Modeling on Electronic Structure and Ferromagnetism in Mn Doped SnO ₂ Quantum Dots. Journal of Physical Chemistry C, 2019, 123, 3067-3075.	3.1	15
24	Effect of doping and annealing on the electronic structure and magnetic properties of nanoscale Co and Zn co-doped SnO2: An experimental study and first-principles modeling. Journal of Alloys and Compounds, 2019, 799, 433-441.	5.5	8
25	Electrospun 3D CNF–SiO2 fabricated using non-biodegradable silica gel as prospective anode for lithium–ion batteries. Ionics, 2019, 25, 5305-5313.	2.4	15
26	Flexible high Li+ conductive lithium garnet–based dry solid polymer electrolyte membrane with enhanced electrochemical performance for lithium metal batteries. Ionics, 2019, 25, 4703-4711.	2.4	13
27	Microstructural engineering in lithium garnets by hot isostatic press to cordon lithium dendrite growth and negate interfacial resistance for all solid state battery applications. Electrochimica Acta, 2019, 312, 320-328.	5.2	25
28	Enhanced electrochemical performance of lithium–sulphur battery by negating polysulphide shuttling and interfacial resistance through aluminium nanolayer deposition on a polypropylene separator. lonics, 2019, 25, 1645-1657.	2.4	11
29	Room temperature multiferroicity and magnetoelectric coupling in Na-deficient sodium bismuth titanate. Applied Physics Letters, 2019, 114, 062902.	3.3	12
30	Interfacial Engineering for Lithium Metal Batteries Based on Garnet Structured Solid Fast Lithium-Ion Conductors. , 2019, , 241-273.		0
31	(Invited) Interface Engineered Lithium Garnets for Lithium-Metal Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
32	An insight into the origin of room-temperature ferromagnetism in SnO ₂ and Mn-doped SnO ₂ quantum dots: an experimental and DFT approach. Physical Chemistry Chemical Physics, 2018, 20, 6500-6514.	2.8	24
33	Microwave-assisted rapid synthesis of Fe3O4/poly(styrene-divinylbenzene-acrylic acid) polymeric magnetic composites and investigation of their structural and magnetic properties. European Polymer Journal, 2018, 98, 177-190.	5.4	39
34	Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification. Journal of Materials Chemistry A, 2018, 6, 21018-21028.	10.3	71
35	Enhanced magnetic ordering transition temperature and broad dielectric relaxation in iron incorporated intergrown pyrochlore-spinel crystals. Journal of Alloys and Compounds, 2018, 763, 409-420.	5.5	2
36	Garnet structured solid fast Li+ conductor as polysulfide shuttle inhibitor in Li-S battery. Electrochemistry Communications, 2018, 93, 109-113.	4.7	35

#	Article	IF	CITATIONS
37	Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors. Journal of Power Sources, 2018, 396, 764-773.	7.8	80
38	Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery. Journal of Solid State Electrochemistry, 2018, 22, 2989-2998.	2.5	45
39	Lithium garnets: Synthesis, structure, Li + conductivity, Li + dynamics and applications. Progress in Materials Science, 2017, 88, 325-411.	32.8	295
40	Tunable magnetocaloric effect in Sr1Ââ^'Âx Ca x Mn0.5Ti0.5O3 perovskites. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	1
41	Lithium garnet oxide dispersed polymer composite membrane for rechargeable lithium batteries. Ionics, 2017, 23, 541-548.	2.4	10
42	Electronic and Thermoelectric Properties of SrTiO3. Current Smart Materials, 2017, 2, .	0.5	2
43	Phase transition, lithium ion conductivity and structural stability of tin substituted lithium garnets. RSC Advances, 2016, 6, 94706-94716.	3.6	7
44	Displacive disorder and spin frustration hosted multiferroic orders in pyrochlore–spinel composites. Journal of Materials Chemistry C, 2016, 4, 7766-7774.	5.5	5
45	Magnetic field-induced switching of magnetic ordering in SrFeO3â^'δ. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	2
46	Investigation on lithium ion conductivity and structural stability of yttrium-substituted Li7La3Zr2O12. Ionics, 2016, 22, 1281-1289.	2.4	44
47	First principle calculations on structural, electronic and transport properties of Li2TiS3 and Li3NbS4 positive electrode materials. Materials for Renewable and Sustainable Energy, 2016, 5, 1.	3.6	5
48	Room temperature dilute magnetism in nanoscale Co and Zn co-doped SnO2. Superlattices and Microstructures, 2016, 89, 7-14.	3.1	19
49	First principle study on electronic structure, structural phase stability, optical and vibrational properties of Ba2ScMO6 (M = Nb, Ta). International Journal of Modern Physics B, 2016, 30, 1550246.	2.0	6
50	First-principle study on lithium intercalated antimonides Ag3Sb and Mg3Sb2. Ionics, 2015, 21, 1351-1361.	2.4	5
51	Facile synthesis of high lithium ion conductive cubic phase lithium garnets for electrochemical energy storage devices. RSC Advances, 2015, 5, 96042-96051.	3.6	53
52	Synthesis of lithium garnets from La2Zr2O7 pyrochlore. Solid State Ionics, 2015, 283, 123-130.	2.7	42
53	Optimization of Lithium Content and Sintering Aid for Maximized Li ⁺ Conductivity and Density in Taâ€Đoped Li ₇ La ₃ Zr ₂ O ₁₂ . Journal of the American Ceramic Society, 2015, 98, 2039-2046.	3.8	70
54	Influence of lithium concentration on the structure and Li ⁺ transport properties of cubic phase lithium garnets. Dalton Transactions, 2015, 44, 539-552.	3.3	27

#	Article	IF	CITATIONS
55	Green grasses as light harvesters in dye sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 947-952.	3.9	48
56	Influence of sintering additives on densification and Li ⁺ conductivity of Al doped Li ₇ La ₃ Zr ₂ O ₁₂ lithium garnet. RSC Advances, 2014, 4, 51228-51238.	3.6	128
57	Effect of Simultaneous Substitution of Y and Ta on the Stabilization of Cubic Phase, Microstructure, and Li ⁺ Conductivity of Li ₇ La ₃ Zr ₂ O ₁₂ Lithium Garnet. ACS Applied Materials & Interfaces, 2014, 6, 17606-17615.	8.0	104
58	Influence of zirconium doping on structure, microstructure, dielectric and impedance properties of strontium bismuth niobate ceramics. Current Applied Physics, 2014, 14, 407-414.	2.4	9
59	Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. Journal of Power Sources, 2013, 240, 18-25.	7.8	185
60	Room temperature ferromagnetic properties of Cu2O microcrystals. Journal of Alloys and Compounds, 2013, 579, 572-575.	5.5	13
61	Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 104, 35-40.	3.9	123
62	Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Physical Chemistry Chemical Physics, 2013, 15, 11327.	2.8	127
63	ELECTRONIC STRUCTURE, MAGNETIC ORDERING AND PHASE STABILITY OF LiFe X (X =) Tj ETQq1 1 (2013, 27, 1350236.	0.784314 1.9	rgBT /Overle 8
64	Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets. AIP Advances, 2013, 3, .	1.3	84
65	Structural, morphological and optical properties of Na and K dual doped CdS thin film. Journal of Alloys and Compounds, 2012, 545, 41-45.	5.5	42
66	Synthesis of Cu2O microcrystals with morphological evolution from octahedral to microrod through a simple surfactant-free chemical route. CrystEngComm, 2012, 14, 8338.	2.6	26
67	Li7-xLa3Sn2-xNbxO12 (x=0.25–1) cubic lithium garnet. Materials Letters, 2012, 77, 57-59.	2.6	15
68	Optimum lithium-ion conductivity in cubic Li7â^'xLa3Hf2â^'xTaxO12. Journal of Power Sources, 2012, 209, 184-188.	7.8	70
69	High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochemistry Communications, 2011, 13, 1373-1375.	4.7	171
70	Synthesis of cubic Li7La3Zr2O12 by modified sol–gel process. Ionics, 2011, 17, 575-580.	2.4	86
71	High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si. Electrochemistry Communications, 2011, 13, 509-512.	4.7	236
72	Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. Journal of Power Sources, 2011, 196, 764-767.	7.8	326

#	Article	IF	CITATIONS
73	Fast ionic conduction in cubic hafnium garnet Li7La3Hf2O12. Ionics, 2010, 16, 855-858.	2.4	31
74	Structure and lithium ion conductivity of garnet-like Li5La3Sb2O12 and Li6SrLa2Sb2O12. Materials Research Bulletin, 2008, 43, 2579-2591.	5.2	66
75	Lattice Parameter and Sintering Temperature Dependence of Bulk and Grain-Boundary Conduction of Garnet-like Solid Li-Electrolytes. Journal of the Electrochemical Society, 2008, 155, A90.	2.9	73
76	Fast Lithium Ion Conduction in Garnetâ€Type Li ₇ La ₃ Zr ₂ O ₁₂ . Angewandte Chemie - International Edition, 2007, 46, 7778-7781.	13.8	2,453
77	Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 143, 14-20.	3.5	95
78	Lithium ion conductivity of Li5+x Ba x La3â^'x Ta2O12 (x = 0–2) with garnet-related structure in dependence of the barium content. Ionics, 2007, 13, 195-203.	2.4	79
79	Dielectric properties of Sr1â^'XBi2+(2/3)X(VXNb1â^'X)2O9 [X=0.1 and 0.2] ceramics. Ceramics International, 2006, 32, 467-470.	4.8	13
80	Electronic structure and structural phase stability of CuAlX2 (X=S, Se, Te) under pressure. Journal of Physics and Chemistry of Solids, 2006, 67, 669-674.	4.0	31
81	Dielectric properties of Sr0.8Bi2.2(V0.2Nb0.8)2O9 ceramic. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 127, 224-227.	3.5	25
82	Characterization of PEG: LiClO4+SrBi4Ti4O15 nanocomposite polymer electrolytes for lithium secondary batteries. Journal of Power Sources, 2005, 149, 90-95.	7.8	39
83	Dielectric properties of Sr1+XBi2â^'(2/3)X(VXTa1â^'X)2O9 [, 0.1 and 0.2] ceramics. Physica B: Condensed Matter, 2005, 357, 439-444.	2.7	6
84	Electronic and structural properties of CuMO2 (M = Al, Ga, In). Journal of Alloys and Compounds, 2005, 388, 19-22.	5.5	52
85	Synthesis and characterization of LiNiyCo1â~'yPO4 (y=0–1) cathode materials for lithium secondary batteries. Ionics, 2004, 10, 88-92.	2.4	50
86	Investigation on ionic conductivity and Raman spectra of Î ³ -Bi2MoO6. Physica B: Condensed Matter, 2004, 352, 227-232.	2.7	42
87	Electronic and structural properties of zinc chalcogenides ZnX (X=S, Se, Te). Journal of Alloys and Compounds, 2003, 359, 22-26.	5.5	84
88	Investigation of structural changes in the phase transformations of γ-Bi2MoO6. Journal of Physics Condensed Matter, 2002, 14, 4001-4010.	1.8	16
89	Phase transformation studies of ceramic BaTiO[sub 3] using thermo-Raman and dielectric constant measurements. Journal of Applied Physics, 2002, 91, 10038.	2.5	68
90	Ionic conductivity and Raman investigations on the phase transformations of Na4P2O7. Journal of Alloys and Compounds, 2002, 340, 95-100.	5.5	17

#	Article	IF	CITATIONS
91	Thermo-Raman Studies on NaH2PO4·2H2O for Dehydration, Condensation, and Phase Transformation. Inorganic Chemistry, 2001, 40, 5917-5923.	4.0	30
92	Thermo-Raman studies on dehydration of Na 3 PO 4 ·12H 2 O. Thermochimica Acta, 2001, 371, 127-135.	2.7	15
93	Coupling of thermogravimetric analysis and thermo-Raman spectroscopy for in situ dynamic thermal analysis. Thermochimica Acta, 2001, 374, 45-49.	2.7	17
94	Studies on thermal hysteresis of KNO3 by thermo-Raman spectroscopy. Thermochimica Acta, 2000, 346, 83-90.	2.7	36
95	Thermo-Raman spectroscopic studies on polymorphism in Na2SO4. Journal of Physics Condensed Matter, 2000, 12, 677-700.	1.8	80
96	Thermo-Raman investigations on structural transformations in hydrated MoO3. Journal of Materials Chemistry, 2000, 10, 2157-2162.	6.7	47
97	Raman studies on ferroelectric phase (phase III) of KNO3. Journal of Applied Physics, 1999, 86, 6779-6788.	2.5	29
98	Synthesis of Cu ₂ O Nanospheres and Cubes: Their Structural, Optical and Magnetic Properties. Advanced Materials Research, 0, 938, 114-117.	0.3	4