
Marija Baranac-Stojanović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5364542/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aromaticity and Stability of Azaborines. Chemistry - A European Journal, 2014, 20, 16558-16565.	3.3	66
2	New insight into the anisotropic effects in solution-state NMR spectroscopy. RSC Advances, 2014, 4, 308-321.	3.6	63
3	High regioselectivity in the heterocyclization of β-oxonitriles to 4-oxothiazolidines: X-ray structure proof. Tetrahedron, 2003, 59, 7803-7810.	1.9	36
4	Substituent Effect on Triplet State Aromaticity of Benzene. Journal of Organic Chemistry, 2020, 85, 4289-4297.	3.2	35
5	Stereo- and regiocontrol of electrophile-initiated rearrangement of push–pull 5-substituted 4-oxothiazolidine derivatives. Tetrahedron, 2001, 57, 5833-5841.	1.9	31
6	Configurational isomerization of push-pull thiazolidinone derivatives controlled by intermolecular and intramolecular RAHB: 1 H NMR dynamic investigation of concentration and temperature effects. Journal of Physical Organic Chemistry, 2004, 17, 118-123.	1.9	30
7	Is the Conventional Interpretation of the Anisotropic Effects of CC Double Bonds and Aromatic Rings in NMR Spectra in Terms of the Ï€â€Electron Shielding/Deshielding Contributions Correct?. Chemistry - A European Journal, 2012, 18, 370-376.	3.3	29
8	A novel and efficient 4-oxothiazolidine-1,2-dithiole rearrangement induced by Lawesson's reagent. Tetrahedron Letters, 2003, 44, 7087-7090.	1.4	25
9	Stereocontrolled Synthesis of New Tetrahydrofuro[2,3-d]thiazole Derivatives via Activated Vinylogous Iminium Ions. Heterocycles, 2005, 65, 2635.	0.7	23
10	¹ H NMR Chemical Shifts of Cyclopropane and Cyclobutane: A Theoretical Study. Journal of Organic Chemistry, 2013, 78, 1504-1507.	3.2	20
11	Gauche preference in 1,2-difluoroethane originates from both orbital and electrostatic stabilization interactions. RSC Advances, 2014, 4, 43834-43838.	3.6	20
12	Origin of Fluorine/Sulfur <i>Gauche</i> Effect of β-Fluorinated Thiol, Sulfoxide, Sulfone, and Thionium Ion. Journal of Organic Chemistry, 2015, 80, 10197-10207.	3.2	20
13	A DFT Study of the Modulation of the Antiaromatic and Openâ€Shell Character of Dibenzo[<i>a</i> , <i>f</i>)pentalene by Employing Three Strategies: Additional Benzoannulation, BN/CC Isosterism, and Substitution. Chemistry - A European Journal, 2019, 25, 9747-9757.	3.3	19
14	Energy decomposition analysis of gauche preference in 2-haloethanol, 2-haloethylamine (halogen = F,) Tj ETQq0 22980-22995.	0 0 rgBT / 3.6	/Overlock 10 T 18
15	1H NMR Dynamic study of thermal Z/E isomerization of 5-substituted 2-alkylidene-4-oxothiazolidine derivatives: Barriers to rotation about CC bond. Journal of Molecular Structure, 2006, 800, 85-92.	3.6	17
16	Reactions of ortho-substituted α,α-dibromoacetophenones with nucleophiles: first examples of combined carbophilic and bromophilic attack on C–Br bonds. Tetrahedron Letters, 2009, 50, 700-703.	1.4	17
17	Structure, configuration, conformation and quantification of the push–pull effect of 2-alkylidene-4-thiazolidinones and 2-alkylidene-4,5-fused bicyclic thiazolidine derivatives. Tetrahedron, 2010, 66, 8958-8967.	1.9	17
18	Catalytic oxidations of enolizable ketones using 2-alkylidene-4-oxothiazolidine vinyl bromide. Tetrahedron, 2011, 67, 8000-8008.	1.9	17

#	Article	IF	CITATIONS
19	Theoretical analysis of the rotational barrier in ethane: cause and consequences. Structural Chemistry, 2015, 26, 989-996.	2.0	16
20	Aromaticity of Diazaborines and Their Protonated Forms. Journal of Organic Chemistry, 2016, 81, 197-205.	3.2	16
21	Triplet-State Structures, Energies, and Antiaromaticity of BN Analogues of Benzene and Their Benzo-Fused Derivatives. Journal of Organic Chemistry, 2019, 84, 13582-13594.	3.2	16
22	Quantification of the Aromaticity of 2-Alkylidenethiazolines Subjected to Push–Pull Activity. Journal of Organic Chemistry, 2011, 76, 3861-3871.	3.2	15
23	Mono BN-substituted analogues of naphthalene: a theoretical analysis of the effect of BN position on stability, aromaticity and frontier orbital energies. New Journal of Chemistry, 2018, 42, 12968-12976.	2.8	15
24	Synthesis of thiazolidine-fused heterocycles via exo-mode cyclizations of vinylogous N-acyliminium ions. Organic and Biomolecular Chemistry, 2012, 10, 575-589.	2.8	14
25	4-Oxothiazolidines with Exocyclic C=C Double Bond(s): Synthesis, Structure, Reactions and Biological Activity. Current Organic Chemistry, 2014, 18, 1108-1148.	1.6	14
26	endo-Mode cyclizations of vinylogous N-acyliminium ions as a route to the synthesis of condensed thiazolidines. Tetrahedron, 2011, 67, 9541-9554.	1.9	13
27	Transformations of 2-alkylidene-4-oxothiazolidine vinyl bromides initiated by bromophilic attack of neutral and anionic nucleophiles. Tetrahedron, 2010, 66, 6873-6884.	1.9	12
28	Bromophilic substitution/carbophilic substitution cascade reactions of α,α-dibromo-2-methoxyacetophenone with C-, N- and O-nucleophiles. Tetrahedron Letters, 2010, 51, 4851-4855.	1.4	11
29	Substituent effects on cyclic electron delocalization in symmetric B- and N-trisubstituted borazine derivatives. RSC Advances, 2013, 3, 24108.	3.6	11
30	2-Alkylidene-4-oxothiazolidine S-oxides: synthesis andÂstereochemistry. Tetrahedron, 2013, 69, 6436-6447.	1.9	11
31	Thionation of N-methyl- and N-unsubstituted thiazolidine enaminones. Journal of the Serbian Chemical Society, 2004, 69, 909-918.	0.8	11
32	4Ï€â€Electron B–N Monocycles: Stability and (Anti)aromaticity. European Journal of Organic Chemistry, 2017, 2017, 5163-5169.	2.4	10
33	Hydrogen bonding in push-pull 5-substituted-2-alkylidene-4-oxothiazolidines: 1H-MNR spectroscopic study. Journal of the Serbian Chemical Society, 2003, 68, 1-7.	0.8	10
34	2-Alkylidene-4-oxothiazolidine Vinyl Bromides: Versatile Precursors for C(5) Functionalization via Pyridine-Assisted Bromine Transfer. Synlett, 2006, 2006, 0729-0732.	1.8	9
35	Density Functional Calculations of the Anisotropic Effects of Borazine and 1,3,2,4â€Ðiazadiboretidine. ChemPhysChem, 2012, 13, 3803-3811.	2.1	9
36	Cyclic π Electron Delocalization in Fluoroborazines. Journal of Physical Chemistry A, 2013, 117, 11540-11547.	2.5	9

#	Article	IF	CITATIONS
37	The effect of steric repulsion on the torsional potential of n-butane: a theoretical study. Tetrahedron, 2015, 71, 5119-5123.	1.9	9
38	The effect of two types of dibenzoannulation of pentalene on molecular energies and magnetically induced currents. Physical Chemistry Chemical Physics, 2019, 21, 3250-3263.	2.8	9
39	Magnetic Anisotropy of the CC Single Bond. Chemistry - A European Journal, 2013, 19, 4249-4254.	3.3	8
40	Silica Gel as a Promoter of Sequential Azaâ€Michael/Michael Reactions of Amines and Propiolic Esters: Solvent―and Metalâ€Free Synthesis of Polyfunctionalized Conjugated Dienes. Chemistry - an Asian Journal, 2018, 13, 1811-1835.	3.3	8
41	Synthesis of 2,3-Dihydro-4-pyridones and 4-Pyridones by the Cyclization Reaction of Ester-Tethered Enaminones. Journal of Organic Chemistry, 2020, 85, 13495-13507.	3.2	8
42	Nucleophilic Functionalization of 2-Alkylidene-4-Oxothiazolidines at C(5)-Position Induced by Formation of Novel Pyridinium Salt. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1411-1415.	1.6	7
43	Can Variations of ¹ Hâ€NMR Chemical Shifts in Benzene Substituted with an Electronâ€Accepting (NO ₂)/Donating (NH ₂) Group be Explained in Terms of Resonance Effects of Substituents?. Chemistry - an Asian Journal, 2018, 13, 877-881.	3.3	7
44	Thermal solid-state Z/E isomerization of 2-alkylidene-4-oxothiazolidines: Effects of non-covalent interactions. Journal of the Serbian Chemical Society, 2011, 76, 317-328.	0.8	6
45	Quantification of the push–pull effect in 2-alkylidene-4-oxothiazolidines by using NMR spectral data and barriers to rotation around the C bond. New Journal of Chemistry, 2016, 40, 6364-6373.	2.8	6
46	Triplet state (anti)aromaticity of some monoheterocyclic analogues of benzene, naphthalene and anthracene. New Journal of Chemistry, 2021, 45, 5060-5074.	2.8	6
47	Singlet/Triplet State Anti/Aromaticity of CyclopentadienylCation: Sensitivity to Substituent Effect. Chemistry, 2021, 3, 765-782.	2.2	6
48	Carbon–bromine cleavage by dimethyl sulfoxide: the key step of C(5) functionalization of push–pull 2-alkylidene-4-oxothiazolidine vinyl bromides. Tetrahedron Letters, 2007, 48, 1695-1698.	1.4	5
49	High-Yield Synthesis of Substituted and Unsubstituted Pyridinium Salts Containing a 4-Oxothiazolidine Moiety. Synthesis, 2008, 2008, 2117-2121.	2.3	5
50	Unusual mode of reactivity of 2-alkylidene-4-oxothiazolidine S-oxides under the Pummerer reaction conditions. Tetrahedron, 2013, 69, 9819-9825.	1.9	5
51	Does aromaticity account for an enhanced thermodynamic stability? The case of monosubstituted azaborines and the stereoelectronic chameleonism of the NH ₂ group. Physical Chemistry Chemical Physics, 2019, 21, 9465-9476.	2.8	5
52	Cyclic voltammetry study of (5-ethoxycarbonylmethylidene-4-oxothiazolidin-2-ylidene)-N-phenylethanamide. Russian Journal of Physical Chemistry A, 2009, 83, 1571-1576.	0.6	4
53	Electron Delocalization in Electronâ€Deficient Alkenes and Pushâ€Pull Alkenes. ChemistrySelect, 2017, 2, 42-50.	1.5	4
54	Analysis of Stability and (Anti)aromaticity of BNâ€Dibenzo[<i>a</i> , <i>e</i>]pentalenes. European Journal of Organic Chemistry, 2018, 2018, 6230-6240.	2.4	4

#	Article	IF	CITATIONS
55	Revival of Hückel Aromatic (Poly)benzenoid Subunits in Triplet State Polycyclic Aromatic Hydrocarbons by Silicon Substitution. Chemistry - an Asian Journal, 2021, , .	3.3	3
56	A theoretical study on borenium ion affinities toward ammonia, formaldehyde and chloride anions. RSC Advances, 2015, 5, 75895-75910.	3.6	2
57	Theoretical study of azido gauche effect and its origin. New Journal of Chemistry, 2017, 41, 4644-4661.	2.8	2
58	Ethyl (E)-2-(4-oxo-1,3-thiazinan-2-ylidene)ethanoate. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o484-o485.	0.2	0