List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5364055/publications.pdf Version: 2024-02-01

		23567	21540
143	13,464	58	114
papers	citations	h-index	g-index
152 all docs	152 docs citations	152 times ranked	19390 citing authors

#	Article	IF	CITATIONS
1	Progress, challenge and perspective of heterogeneous photocatalysts. Chemical Society Reviews, 2013, 42, 2568-2580.	38.1	1,255
2	High-speed graphene transistors with a self-aligned nanowire gate. Nature, 2010, 467, 305-308.	27.8	1,156
3	Mechanistic Insights on Ternary Ni _{2â^'} <i>_x</i> Co <i>_x</i> P for Hydrogen Evolution and Their Hybrids with Graphene as Highly Efficient and Robust Catalysts for Overall Water Splitting. Advanced Functional Materials, 2016, 26, 6785-6796.	14.9	500
4	Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy and Environmental Science, 2012, 5, 6732.	30.8	400
5	High Catalytic Activity and Chemoselectivity of Sub-nanometric Pd Clusters on Porous Nanorods of CeO ₂ for Hydrogenation of Nitroarenes. Journal of the American Chemical Society, 2016, 138, 2629-2637.	13.7	387
6	Terthiophene-Based D–A Polymer with an Asymmetric Arrangement of Alkyl Chains That Enables Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2015, 137, 14149-14157.	13.7	386
7	Plasmonic Modulation of the Upconversion Fluorescence in NaYF ₄ :Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells. Angewandte Chemie - International Edition, 2010, 49, 2865-2868.	13.8	343
8	Electrically Conductive and Optically Active Porous Silicon Nanowires. Nano Letters, 2009, 9, 4539-4543.	9.1	324
9	Graphene‣upported Hemin as a Highly Active Biomimetic Oxidation Catalyst. Angewandte Chemie - International Edition, 2012, 51, 3822-3825.	13.8	309
10	Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2. Nature Communications, 2017, 8, 15266.	12.8	272
11	Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover. Energy and Environmental Science, 2019, 12, 2298-2304.	30.8	227
12	Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials, 2015, 59, 116-124.	11.4	212
13	Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano Energy, 2017, 38, 290-296.	16.0	212
14	Nanoscale Energy Deposition by X-ray Absorbing Nanostructures. Journal of Physical Chemistry B, 2007, 111, 11622-11625.	2.6	207
15	Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting. ACS Applied Materials & Interfaces, 2016, 8, 10826-10834.	8.0	205
16	Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy, 2016, 27, 247-254.	16.0	196
17	High- <i>κ</i> oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6711-6715.	7.1	187
18	A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nature Communications, 2021, 12, 3502.	12.8	183

#	Article	IF	CITATIONS
19	Sub-100 nm Channel Length Graphene Transistors. Nano Letters, 2010, 10, 3952-3956.	9.1	167
20	Hollow Fluffy Co ₃ O ₄ Cages as Efficient Electroactive Materials for Supercapacitors and Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 20322-20331.	8.0	163
21	Unveiling the Formation Pathway of Single Crystalline Porous Silicon Nanowires. ACS Applied Materials & Interfaces, 2011, 3, 261-270.	8.0	156
22	pH-Operated Mechanized Porous Silicon Nanoparticles. Journal of the American Chemical Society, 2011, 133, 8798-8801.	13.7	146
23	Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quinolines at room temperature. Journal of Catalysis, 2018, 359, 101-111.	6.2	146
24	Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surface Science Reports, 2018, 73, 1-36.	7.2	141
25	Comprehensive Understanding of the Spatial Configurations of CeO ₂ in NiO for the Electrocatalytic Oxygen Evolution Reaction: Embedded or Surfaceâ€Loaded. Advanced Functional Materials, 2018, 28, 1706056.	14.9	141
26	Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. NPG Asia Materials, 2014, 6, e108-e108.	7.9	140
27	Surface engineering on CeO ₂ nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation. Nanoscale, 2015, 7, 11686-11691.	5.6	137
28	Interfacial Frustrated Lewis Pairs of CeO ₂ Activate CO ₂ for Selective Tandem Transformation of Olefins and CO ₂ into Cyclic Carbonates. Journal of the American Chemical Society, 2019, 141, 11353-11357.	13.7	136
29	Understanding All-Solid Frustrated-Lewis-Pair Sites on CeO ₂ from Theoretical Perspectives. ACS Catalysis, 2018, 8, 546-554.	11.2	135
30	Highâ€Performance Topâ€Gated Grapheneâ€Nanoribbon Transistors Using Zirconium Oxide Nanowires as Highâ€Dielectricâ€Constant Gate Dielectrics. Advanced Materials, 2010, 22, 1941-1945.	21.0	132
31	Porous silicon nanowires. Nanoscale, 2011, 3, 4060.	5.6	129
32	One-step synthesis of multi-walled carbon nanotubes/ultra-thin Ni(OH) ₂ nanoplate composite as efficient catalysts for water oxidation. Journal of Materials Chemistry A, 2014, 2, 11799-11806.	10.3	129
33	Visible-Light-Activated Suzuki–Miyaura Coupling Reactions of Aryl Chlorides over the Multifunctional Pd/Au/Porous Nanorods of CeO ₂ Catalysts. ACS Catalysis, 2015, 5, 6481-6488.	11.2	126
34	Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy. Carbon, 2014, 66, 713-719.	10.3	123
35	Plasmonic Enhancements of Photocatalytic Activity of Pt/n-Si/Ag Photodiodes Using Au/Ag Core/Shell Nanorods. Journal of the American Chemical Society, 2011, 133, 16730-16733.	13.7	121
36	Photocatalytic properties of porous silicon nanowires. Journal of Materials Chemistry, 2010, 20, 3590.	6.7	120

#	Article	IF	CITATIONS
37	Wavelet analysis of extended X-ray absorption fine structure data: Theory, application. Physica B: Condensed Matter, 2018, 542, 12-19.	2.7	114
38	Unveiling a Key Intermediate in Solvent Vapor Postannealing to Enlarge Crystalline Domains of Organometal Halide Perovskite Films. Advanced Functional Materials, 2017, 27, 1604944.	14.9	107
39	Low pressure induced porous nanorods of ceria with high reducibility and large oxygen storage capacity: synthesis and catalytic applications. Journal of Materials Chemistry A, 2014, 2, 16459-16466.	10.3	106
40	Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale, 2014, 6, 2603.	5.6	105
41	Semi-solid and solid frustrated Lewis pair catalysts. Chemical Society Reviews, 2018, 47, 5541-5553.	38.1	102
42	Ultrathin porous Co ₃ O ₄ nanoplates as highly efficient oxygen evolution catalysts. Journal of Materials Chemistry A, 2015, 3, 8107-8114.	10.3	95
43	Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. Nature Communications, 2014, 5, 3200.	12.8	90
44	CsPbBr ₃ perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection. Journal of Materials Chemistry C, 2017, 5, 309-313.	5.5	89
45	Graphene and Their Hybrid Electrocatalysts for Water Splitting. ChemCatChem, 2017, 9, 1554-1568.	3.7	88
46	Single-layer graphene on Al ₂ O ₃ /Si substrate: better contrast and higher performance of graphene transistors. Nanotechnology, 2010, 21, 015705.	2.6	87
47	Phosphatase-like Activity of Porous Nanorods of CeO ₂ for the Highly Stabilized Dephosphorylation under Interferences. ACS Applied Materials & Interfaces, 2019, 11, 195-201.	8.0	82
48	A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene. Journal of Materials Chemistry, 2012, 22, 1498-1503.	6.7	76
49	Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. Nano Research, 2017, 10, 814-825.	10.4	71
50	Origin of the Different Photoelectrochemical Performance of Mesoporous BiVO ₄ Photoanodes between the BiVO ₄ and the FTO Side Illumination. Journal of Physical Chemistry C, 2015, 119, 23350-23357.	3.1	70
51	Engineering Surface Structure of Spinel Oxides via High-Valent Vanadium Doping for Remarkably Enhanced Electrocatalytic Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 33012-33021.	8.0	70
52	Photolyase-Like Catalytic Behavior of CeO ₂ . Nano Letters, 2019, 19, 8270-8277.	9.1	70
53	Boosting Electrocatalytic Activity of Ru for Acidic Hydrogen Evolution through Hydrogen Spillover Strategy. ACS Energy Letters, 2022, 7, 1330-1337.	17.4	70
54	Facile synthesis of CoX (X = S, P) as an efficient electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 13066-13071.	10.3	66

#	Article	IF	CITATIONS
55	Amine-Modulated/Engineered Interfaces of NiMo Electrocatalysts for Improved Hydrogen Evolution Reaction in Alkaline Solutions. ACS Applied Materials & Interfaces, 2018, 10, 1728-1733.	8.0	65
56	Rational Design and Synthesis of Freestanding Photoelectric Nanodevices as Highly Efficient Photocatalysts. Nano Letters, 2010, 10, 1941-1949.	9.1	62
57	Iridiumâ€Chromium Oxide Nanowires as Highly Performed OER Catalysts in Acidic Media. ChemCatChem, 2019, 11, 6008-6014.	3.7	60
58	Insights on catalytic mechanism of CeO2 as multiple nanozymes. Nano Research, 2022, 15, 10328-10342.	10.4	60
59	Catalytically Selective Chemotherapy from Tumorâ€Metabolic Generated Lactic Acid. Small, 2019, 15, e1903746.	10.0	59
60	In Situ Formation of Isolated Bimetallic PtCe Sites of Single-Dispersed Pt on CeO ₂ for Low-Temperature CO Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 38134-38140.	8.0	58
61	Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting. Journal of Materials Chemistry A, 2017, 5, 19091-19097.	10.3	55
62	Phosphorusâ€Doped MoS ₂ Nanosheets Supported on Carbon Cloths as Efficient Hydrogenâ€Generation Electrocatalysts. ChemCatChem, 2018, 10, 1571-1577.	3.7	55
63	Overcoming the Deactivation of Pt/CNT by Introducing CeO ₂ for Selective Base-Free Glycerol-to-Glyceric Acid Oxidation. ACS Catalysis, 2020, 10, 3832-3837.	11.2	55
64	One-dimensional homogeneous and heterogeneous nanowires for solar energy conversion. Journal of Materials Chemistry, 2012, 22, 16171.	6.7	53
65	Pressure Regulations on the Surface Properties of CeO ₂ Nanorods and Their Catalytic Activity for CO Oxidation and Nitrile Hydrolysis Reactions. ACS Applied Materials & Interfaces, 2016, 8, 22988-22996.	8.0	50
66	Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature. Applied Catalysis B: Environmental, 2021, 297, 120418.	20.2	50
67	Dual-Active-Sites Design of Co@C Catalysts for Ultrahigh Selective Hydrogenation of N-Heteroarenes. CheM, 2020, 6, 2994-3006.	11.7	47
68	Synthesis of Tubular Gold and Silver Nanoshells Using Silica Nanowire Core Templates. Langmuir, 2006, 22, 6367-6374.	3.5	46
69	Catalytic Behavior of Graphene Oxides for Converting CO ₂ into Cyclic Carbonates at One Atmospheric Pressure. ACS Sustainable Chemistry and Engineering, 2018, 6, 4204-4211.	6.7	46
70	A bottom-up synthesis of α-Fe ₂ O ₃ nanoaggregates and their composites with graphene as high performance anodes in lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 2158-2165.	10.3	45
71	Synergistic and targeted drug delivery based on nano-CeO ₂ capped with galactose functionalized pillar[5]arene via host–guest interactions. Journal of Materials Chemistry B, 2017, 5, 3483-3487.	5.8	45
72	Insights into the effects of surface properties of oxides on the catalytic activity of Pd for C–C coupling reactions. Nanoscale, 2015, 7, 3016-3021.	5.6	44

#	Article	IF	CITATIONS
73	FeOx@carbon yolk/shell nanowires with tailored void spaces as stable and high-capacity anodes for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 12487-12496.	10.3	44
74	Dual-responsive dithio-polydopamine coated porous CeO ₂ nanorods for targeted and synergistic drug delivery. International Journal of Nanomedicine, 2018, Volume 13, 2161-2173.	6.7	43
75	Insights into the Interfacial Lewis Acid–Base Pairs in CeO ₂ ‣oaded CoS ₂ Electrocatalysts for Alkaline Hydrogen Evolution. Small, 2021, 17, e2103018.	10.0	41
76	Hierarchical Dualâ€Scaffolds Enhance Charge Separation and Collection for High Efficiency Semitransparent Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600484.	3.7	40
77	Tuning chemical compositions of bimetallic AuPd catalysts for selective catalytic hydrogenation of halogenated quinolines. Journal of Materials Chemistry A, 2017, 5, 3260-3266.	10.3	40
78	Quantitatively Intrinsic Biomimetic Catalytic Activity of Nanocerias as Radical Scavengers and Their Ability against H ₂ 0 ₂ and Doxorubicin-Induced Oxidative Stress. ACS Applied Materials & Interfaces, 2017, 9, 23342-23352.	8.0	40
79	Cerium Phosphate as a Novel Cocatalyst Promoting NiCo ₂ O ₄ Nanowire Arrays for Efficient and Robust Electrocatalytic Oxygen Evolution. ACS Applied Energy Materials, 2019, 2, 5769-5776.	5.1	39
80	A pHâ€Responsive Polymerâ€CeO ₂ Hybrid to Catalytically Generate Oxidative Stress for Tumor Therapy. Small, 2020, 16, e2004654.	10.0	39
81	3D graphene/nylon rope as a skeleton for noble metal nanocatalysts for highly efficient heterogeneous continuous-flow reactions. Journal of Materials Chemistry A, 2015, 3, 10504-10511.	10.3	35
82	Influence of fluorination on the properties and performance of isoindigo–quaterthiophene-based polymers. Journal of Materials Chemistry A, 2016, 4, 5039-5043.	10.3	35
83	Towards highly active Pd/CeO ₂ for alkene hydrogenation by tuning Pd dispersion and surface properties of the catalysts. Nanoscale, 2017, 9, 3140-3149.	5.6	35
84	Ce-doped CoS ₂ pyrite with weakened O ₂ adsorption suppresses catalyst leaching and stabilizes electrocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2019, 7, 17775-17781.	10.3	35
85	Size-Controlled Synthesis of Pd Nanocatalysts on Defect-Engineered CeO ₂ for CO ₂ Hydrogenation. ACS Applied Materials & Interfaces, 2021, 13, 24957-24965.	8.0	33
86	Additiveâ€Free, Robust H ₂ Production from H ₂ O and DMF by Dehydrogenation Catalyzed by Cu/Cu ₂ O Formed In Situ. Angewandte Chemie - International Edition, 2017, 56, 8245-8249.	13.8	32
87	Interfacial metal-nitrogen units of NiCo/nitrogen-doped carbon for robust oxygen reduction reaction. Carbon, 2019, 155, 545-552.	10.3	32
88	Quantum chemical study of surface reactions of glycine on the Si(100)-2×1 surface. Surface Science, 2004, 569, 12-22.	1.9	30
89	Carbon-assisted conversion reaction-based oxide nanomaterials for lithium-ion batteries. Sustainable Energy and Fuels, 2018, 2, 1124-1140.	4.9	30
90	Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation. Science Bulletin, 2015, 60, 1395-1402.	9.0	29

#	Article	IF	CITATIONS
91	Heterointegration of Pt/Si/Ag Nanowire Photodiodes and Their Photocatalytic Properties. Advanced Functional Materials, 2010, 20, 3005-3011.	14.9	28
92	Facile synthesis of highly-dispersed Pt/CeO ₂ by a spontaneous surface redox chemical reaction for CO oxidation. Catalysis Science and Technology, 2018, 8, 3233-3237.	4.1	28
93	Silicon-based nanowires from silicon wafers catalyzed by cobalt nanoparticles in a hydrogen environment. Chemical Communications, 2005, , 2274.	4.1	27
94	Pt/porous nanorods of ceria as efficient high temperature catalysts with remarkable catalytic stability for carbon dioxide reforming of methane. Journal of Materials Chemistry A, 2015, 3, 18074-18082.	10.3	27
95	Hydrogen activation enabled by the interfacial frustrated Lewis pairs on cobalt borate nanosheets. Journal of Catalysis, 2019, 372, 142-150.	6.2	27
96	Highly selective transfer hydrogenation of furfural into furfuryl alcohol by interfacial frustrated Lewis pairs on CeO2. Journal of Catalysis, 2022, 410, 54-62.	6.2	26
97	Repeatable fluorescence switcher of Eu ³⁺ -doped CeO ₂ nanorods by <scp>l</scp> (+)-ascorbic acid and hydrogen peroxide. Journal of Materials Chemistry C, 2014, 2, 8729-8735.	5.5	24
98	Effects of CeO ₂ geometry on corrosion resistance of epoxy coatings. Surface Engineering, 2020, 36, 175-183.	2.2	24
99	Silica Nanocoils. Journal of Physical Chemistry B, 2006, 110, 8296-8301.	2.6	23
100	Spatial intimacy of binary active-sites for selective sequential hydrogenation-condensation of nitriles into secondary imines. Nature Communications, 2021, 12, 3382.	12.8	22
101	Carbon Dioxide Reforming of Methane by Ni/Co Nanoparticle Catalysts Immobilized on Single-Walled Carbon Nanotubes. Energy & Fuels, 2008, 22, 2183-2187.	5.1	21
102	Surface engineering of one-dimensional tin oxide nanostructures for chemical sensors. Mikrochimica Acta, 2013, 180, 1181-1200.	5.0	21
103	Structural influence of porous FeO _x @C nanorods on their performance as anodes of lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 18649-18656.	10.3	19
104	Theoretical Studies of Benzonitrile at the Si(100)-2×1 Surface. Journal of Physical Chemistry B, 2004, 108, 8305-8310.	2.6	18
105	Tribological behavior and characterization analysis of modified nano-CeO2 filled oily diatomite/PVDF composites. Tribology International, 2019, 130, 299-307.	5.9	18
106	Probing Site Activity of Monodisperse Pt Nanoparticle Catalysts Using Steam Reforming of Methane. Journal of Physical Chemistry Letters, 2010, 1, 254-259.	4.6	17
107	Theoretical investigations on CH2CH–CH2OH on the Si(100)-2×1 and Ge(100)-2×1 surfaces. Surface Science, 2005, 586, 45-55.	1.9	16
108	Competitive adsorption on PtCo/CoBOx catalysts enables the selective hydrogen-reductive-imination of nitroarenes with aldehydes into imines. Journal of Catalysis, 2019, 374, 72-81.	6.2	16

#	Article	IF	CITATIONS
109	Single crystalline CeO2 nanotubes. Nano Research, 2021, 14, 715-719.	10.4	16
110	Synthesis and electric properties of dicobalt silicide nanobelts. Chemical Communications, 2011, 47, 1255-1257.	4.1	15
111	Interfacial Effects of the CuO/GO Composite to Mediate the Side Reactions of <i>N,N</i> -Dimethylformamide Fragments. ACS Applied Materials & Interfaces, 2014, 6, 22174-22182.	8.0	14
112	Morphology Evolution of Tin-Based Oxide Hierarchical Structures Synthesized by Molten Salt Approach and Their Applications as Anode for Lithium Ion Battery. Crystal Growth and Design, 2016, 16, 34-41.	3.0	13
113	Manipulating Doping of Organic Semiconductors by Reactive Oxygen for Fieldâ€Effect Transistors. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800297.	2.4	13
114	Atomic-level correlation between the electrochemical performance of an oxygen-evolving catalyst and the effects of CeO2 functionalization. Nano Research, 2022, 15, 2994-3000.	10.4	13
115	Dissociative Adsorption of Methylsilane on the Si(100)-2 × 1 Surface. Journal of Physical Chemistry B, 2004, 108, 15103-15109.	2.6	12
116	Two-step hydrothermally synthesized Ce1-xZrxO2 for oxidative dehydrogenation of ethylbenzene with carbon dioxide. Journal of CO2 Utilization, 2019, 34, 99-107.	6.8	12
117	Size-Dependent Adsorption of Styrene on Pd Clusters: A Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 2182-2188.	3.1	12
118	Multiscale porous single-atom Co catalysts for epoxidation with O ₂ . Journal of Materials Chemistry A, 2022, 10, 6016-6022.	10.3	12
119	Enhanced single strand breaks of supercoiled DNA in a matrix of gold nanotubes under X-ray irradiation. Journal of Colloid and Interface Science, 2012, 378, 70-76.	9.4	11
120	Selective Semihydrogenation of Phenylacetylene to Styrene Catalyzed by Alloyed Palladium/Gold Catalysts Anchored on Cerium Oxide. ChemNanoMat, 2018, 4, 472-476.	2.8	11
121	Phytic acid-modified CeO2 as Ca2+ inhibitor for a security reversal of tumor drug resistance. Nano Research, 2022, 15, 4334-4343.	10.4	11
122	High performance amorphous ZnMgO/carbon nanotube composite thin-film transistors with a tunable threshold voltage. Nanoscale, 2013, 5, 2830.	5.6	10
123	Thermally stable sandwich-type catalysts of Pt nanoparticles encapsulated in CeO ₂ nanorod/CeO ₂ nanoparticle core/shell supports for methane oxidation at high temperatures. RSC Advances, 2016, 6, 40323-40329.	3.6	10
124	A simple approach towards uniform spherical Ag-like nanoparticles. Nanoscale, 2012, 4, 3036.	5.6	9
125	Uniform small metal nanoparticles anchored on CeO2 nanorods driven by electroless chemical deposition. Rare Metals, 2020, 39, 806-814.	7.1	9
126	Single crystal MnOOH nanotubes for selective oxidative coupling of anilines to aromatic azo compounds. Journal of Materials Chemistry A, 2021, 9, 19692-19697.	10.3	9

#	ARTICLE	IF	CITATIONS
127	Phytate Coordination-Enhanced Electrocatalytic Activity of Copper for Nitroarene Hydrogenation through Concerted Proton-Coupled Electron Transfer. ACS Applied Materials & Interfaces, 2022, 14, 14202-14209.	8.0	9
128	Additiveâ€Free, Robust H ₂ Production from H ₂ O and DMF by Dehydrogenation Catalyzed by Cu/Cu ₂ O Formed In Situ. Angewandte Chemie, 2017, 129, 8357-8361.	2.0	7
129	Chemical Doped Ternary and Quaternary Transitionâ€Metalâ€Based Electrocatalysts for Hydrogen Evolution Reaction. ChemCatChem, 2019, 11, 4998-5012.	3.7	7
130	Direct transformation of fatty acid-derived monomers from dimer acid manufacturing into valuable bio-plasticizers with high plasticization and compatibilization. Journal of Cleaner Production, 2021, 289, 125821.	9.3	7
131	Surface modification of gold nanotubules via microwave radiation, sonication and chemical etching. Chemical Physics Letters, 2006, 432, 195-199.	2.6	6
132	Recognition of melting of nanoparticle catalysts with cubically shaped Co3O4 nanoparticles. Journal of Colloid and Interface Science, 2008, 321, 251-255.	9.4	6
133	Aerosolization System for Experimental Inhalation Studies of Carbon-Based Nanomaterials. Aerosol Science and Technology, 2012, 46, 94-107.	3.1	5
134	Temperature-responsive dissolution/recrystallization of Zn MOF enables the maximum efficiency and recyclability of catalysts. Chemical Communications, 2020, 56, 1960-1963.	4.1	5
135	Electron-Enriched Pd Nanoparticles for Selective Hydrogenation of Halonitrobenzenes to Haloanilines. Catalysts, 2021, 11, 543.	3.5	5
136	In situ Re onstruction of Pt Nanoparticles Interface for Highly Selective Synthesis of Primary Amines. ChemCatChem, 2022, 14, .	3.7	5
137	Photoinduced Phase Transition of Ce-UiO-66 to Ce-BDC-OH. Inorganic Chemistry, 0, , .	4.0	4
138	Pyrite-type electrocatalysts for hydrogen evolution. MRS Bulletin, 2020, 45, 555-561.	3.5	2
139	One-Dimensional Silicon Nanowire Composites for Photocatalysis. World Scientific Series in Nanoscience and Nanotechnology, 2016, , 57-80.	0.1	1
140	Nanowires for solar energy and hydrogen production. , 2007, , .		0
141	Heterointegration of Pt/Si/Ag Nanowire Photodiodes and Their Photocatalytic Properties. Advanced Functional Materials, 2010, 20, n/a-n/a.	14.9	0
142	Innenrücktitelbild: Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst (Angew. Chem. 16/2012). Angewandte Chemie, 2012, 124, 4045-4045.	2.0	0
143	Inside Back Cover: Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst (Angew.) Tj ETC	2q1_1_0.78 13.8	34314 rgBT (