
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5363862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene, 2007, 26, 3227-3239.	2.6	951
2	FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development (Cambridge), 2007, 134, 2895-2902.	1.2	695
3	An essential function of the mitogenâ€activated protein kinase Erk2 in mouse trophoblast development. EMBO Reports, 2003, 4, 964-968.	2.0	335
4	Roles of the <i>Candida albicans</i> Mitogen-Activated Protein Kinase Homolog, Cek1p, in Hyphal Development and Systemic Candidiasis. Infection and Immunity, 1998, 66, 2713-2721.	1.0	313
5	Atypical mitogen-activated protein kinases: Structure, regulation and functions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1376-1387.	1.9	238
6	Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis. Oncogene, 2000, 19, 3460-3469.	2.6	224
7	Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14074-14079.	3.3	219
8	Extracellular Signal-Regulated Kinases 1 and 2 Regulate the Balance Between Eccentric and Concentric Cardiac Growth. Circulation Research, 2011, 108, 176-183.	2.0	217
9	Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA. Genes and Development, 2001, 15, 2702-2719.	2.7	206
10	From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. Journal of Hematology and Oncology, 2010, 3, 8.	6.9	206
11	MEK1-ERK2 Signaling Pathway Protects Myocardium From Ischemic Injury In Vivo. Circulation, 2004, 109, 1938-1941.	1.6	203
12	An Allosteric Inhibitor of the Human Cdc34ÂUbiquitin-Conjugating Enzyme. Cell, 2011, 145, 1075-1087.	13.5	203
13	ERKs in Cancer: Friends or Foes?. Cancer Research, 2014, 74, 412-419.	0.4	190
14	The IKK-related kinases: from innate immunity to oncogenesis. Cell Research, 2008, 18, 889-899.	5.7	165
15	Rho Family GTPases Are Required for Activation of Jak/STAT Signaling by G Protein-Coupled Receptors. Molecular and Cellular Biology, 2003, 23, 1316-1333.	1.1	140
16	Dual Regulation of MMP-2 Expression by the Type 1 Insulin-like Growth Factor Receptor. Journal of Biological Chemistry, 2004, 279, 19683-19690.	1.6	139
17	Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO Journal, 2004, 23, 4780-4791.	3.5	136
18	The transcriptomic landscape and directed chemical interrogation of MLL-rearranged acute myeloid leukemias. Nature Genetics, 2015, 47, 1030-1037.	9.4	132

#	Article	IF	CITATIONS
19	Rapid Turnover of Extracellular Signal-Regulated Kinase 3 by the Ubiquitin-Proteasome Pathway Defines a Novel Paradigm of Mitogen-Activated Protein Kinase Regulation during Cellular Differentiation. Molecular and Cellular Biology, 2003, 23, 4542-4558.	1.1	129
20	Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nature Communications, 2020, 11, 3701.	5.8	128
21	Differential Regulation of P27Kip1 Expression by Mitogenic and Hypertrophic Factors. Journal of Cell Biology, 2000, 148, 543-556.	2.3	126
22	N-Terminal Ubiquitination of Extracellular Signal-Regulated Kinase 3 and p21 Directs Their Degradation by the Proteasome. Molecular and Cellular Biology, 2004, 24, 6140-6150.	1.1	121
23	Derepressed Hyphal Growth and Reduced Virulence in a VH1 Family-related Protein Phosphatase Mutant of the Human PathogenCandida albicans. Molecular Biology of the Cell, 1997, 8, 2539-2551.	0.9	105
24	Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation by APCCdh1 in G1 phase. EMBO Journal, 2008, 27, 679-691.	3.5	89
25	Functional Redundancy of ERK1 and ERK2 MAP Kinases during Development. Cell Reports, 2015, 12, 913-921.	2.9	86
26	Cell cycle reentry of mammalian fibroblasts is accompanied by the sustained activation of P44mapk and P42mapk isoforms in the G1 phase and their inactivation at the G1/s transition. Journal of Cellular Physiology, 1995, 163, 577-588.	2.0	85
27	Genetic Demonstration of a Redundant Role of Extracellular Signal-Regulated Kinase 1 (ERK1) and ERK2 Mitogen-Activated Protein Kinases in Promoting Fibroblast Proliferation. Molecular and Cellular Biology, 2010, 30, 2918-2932.	1.1	79
28	Regulation of MAPK-activated Protein Kinase 5 Activity and Subcellular Localization by the Atypical MAPK ERK4/MAPK4. Journal of Biological Chemistry, 2006, 281, 35499-35510.	1.6	77
29	Loss of Erk3 function in mice leads to intrauterine growth restriction, pulmonary immaturity, and neonatal lethality. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16710-16715.	3.3	73
30	Nuclear Export of ERK3 by a CRM1-dependent Mechanism Regulates Its Inhibitory Action on Cell Cycle Progression. Journal of Biological Chemistry, 2003, 278, 42615-42624.	1.6	70
31	Activation loop phosphorylation of the atypical MAP kinases ERK3 and ERK4 is required for binding, activation and cytoplasmic relocalization of MK5. Journal of Cellular Physiology, 2008, 217, 778-788.	2.0	70
32	Chemo-genomic interrogation of CEBPA mutated AML reveals recurrent CSF3R mutations and subgroup sensitivity to JAK inhibitors. Blood, 2016, 127, 3054-3061.	0.6	70
33	Activation Loop Phosphorylation of ERK3/ERK4 by Group I p21-activated Kinases (PAKs) Defines a Novel PAK-ERK3/4-MAPK-activated Protein Kinase 5 Signaling Pathway. Journal of Biological Chemistry, 2011, 286, 6470-6478.	1.6	65
34	The Extracellular Signal-Regulated Kinase 3 (Mitogen-Activated Protein Kinase 6) Tj ETQq0 0 0 rgBT /Overlock 1 Morphology. Molecular and Cellular Biology, 2012, 32, 2467-2478.	0 Tf 50 142 1.1	7 Td ([MAPK6] 63
35	Essential role of calcium in the regulation of MAP kinase phosphatase-1 expression. Oncogene, 1997, 15, 717-725.	2.6	58
36	Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors. BMC Cancer, 2008, 8, 337.	1.1	56

#	Article	IF	CITATIONS
37	RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth. Oncogene, 2013, 32, 2917-2926.	2.6	56
38	Cyclic AMP-mediated Inhibition of Angiotensin II-induced Protein Synthesis Is Associated with Suppression of Tyrosine Phosphorylation Signaling in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 1997, 272, 26879-26886.	1.6	48
39	E4F1: a novel candidate factor for mediating BMI1 function in primitive hematopoietic cells. Genes and Development, 2006, 20, 2110-2120.	2.7	48
40	Redundancy in the World of MAP Kinases: All for One. Frontiers in Cell and Developmental Biology, 2016, 4, 67.	1.8	45
41	Cyclic AMP induces morphological changes of vascular smooth muscle cells by inhibiting a rac-dependent signaling pathway. Journal of Cellular Physiology, 2005, 204, 412-422.	2.0	44
42	Cloning and characterization of mouse extracellular-signal-regulated protein kinase 3 as a unique gene product of 100ÂkDa. Biochemical Journal, 2000, 346, 169-175.	1.7	43
43	p107 inhibits G1 to S phase progression by down-regulating expression of the F-box protein Skp2. Journal of Cell Biology, 2005, 168, 55-66.	2.3	39
44	Sef Downregulation by Ras Causes MEK1/2 to Become Aberrantly Nuclear Localized Leading to Polyploidy and Neoplastic Transformation. Cancer Research, 2012, 72, 626-635.	0.4	37
45	C-terminal domain phosphorylation of ERK3 controlled by Cdk1 and Cdc14 regulates its stability in mitosis. Biochemical Journal, 2010, 428, 103-111.	1.7	33
46	Targeted Inactivation of <i>Mapk4</i> in Mice Reveals Specific Nonredundant Functions of Erk3/Erk4 Subfamily Mitogen-Activated Protein Kinases. Molecular and Cellular Biology, 2010, 30, 5752-5763.	1.1	30
47	Repression of mitogen-activated protein kinases ERK1/ERK2 activity by a protein tyrosine phosphatase in rat fibroblasts transformed by upstream oncoproteins. , 1998, 174, 35-47.		28
48	The Protein Kinase ERK3 Is Encoded by a Single Functional Gene: Genomic Analysis of the ERK3 Gene Family. Genomics, 2002, 80, 673-680.	1.3	20
49	Phosphorylation of Ser72 does not regulate the ubiquitin ligase activity and subcellular localization of Skp2. Cell Cycle, 2010, 9, 975-979.	1.3	20
50	E4F1 Is a Master Regulator of CHK1-Mediated Functions. Cell Reports, 2015, 11, 210-219.	2.9	19
51	Loss of interleukin-17 receptor D promotes chronic inflammation-associated tumorigenesis. Oncogene, 2021, 40, 452-464.	2.6	18
52	The Catalytic Activity of the Mitogen-Activated Protein Kinase Extracellular Signal-Regulated Kinase 3 Is Required To Sustain CD4 ⁺ CD8 ⁺ Thymocyte Survival. Molecular and Cellular Biology, 2014, 34, 3374-3387.	1.1	17
53	Deubiquitinating Enzyme USP20 Regulates Extracellular Signal-Regulated Kinase 3 Stability and Biological Activity. Molecular and Cellular Biology, 2017, 37, .	1.1	17
54	The Non-Classical MAP Kinase ERK3 Controls T Cell Activation. PLoS ONE, 2014, 9, e86681.	1.1	17

4

#	Article	IF	CITATIONS
55	Dual-tag prokaryotic vectors for enhanced expression of full-length recombinant proteins. Analytical Biochemistry, 2002, 310, 219-222.	1.1	16
56	Administration of antenatal glucocorticoids and postnatal surfactant ameliorates respiratory distress syndrome–associated neonatal lethality in Erk3â^'/â^' mouse pups. Pediatric Research, 2014, 76, 24-32.	1.1	13
57	Reevaluation of the Role of Extracellular Signal-Regulated Kinase 3 in Perinatal Survival and Postnatal Growth Using New Genetically Engineered Mouse Models. Molecular and Cellular Biology, 2019, 39, .	1.1	13
58	Cloning and characterization of mouse extracellular-signal-regulated protein kinase 3 as a unique gene product of 100ÂkDa. Biochemical Journal, 2000, 346, 169.	1.7	12
59	Towards the development of chromone-based MEK1/2 modulators. European Journal of Medicinal Chemistry, 2014, 85, 127-138.	2.6	12
60	Erk4. The AFCS-nature Molecule Pages, 0, , .	0.2	12
61	Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacological Reviews, 2021, 73, 1434-1467.	7.1	12
62	F-Box Proteins Elongate Translation During Stress Recovery. Science Signaling, 2012, 5, pe25.	1.6	11
63	The atypical <scp>MAPK ERK</scp> 3 controls positive selection of thymocytes. Immunology, 2015, 145, 161-169.	2.0	11
64	Loss of Extracellular Signal-Regulated Kinase 1/2 in the Retinal Pigment Epithelium Leads to RPE65 Decrease and Retinal Degeneration. Molecular and Cellular Biology, 2017, 37, .	1.1	11
65	Interleukin-17 Receptor D in Physiology, Inflammation and Cancer. Frontiers in Oncology, 2021, 11, 656004.	1.3	11
66	Title is missing!. Molecular and Cellular Biochemistry, 2000, 212, 99-109.	1.4	10
67	Visualization of Endogenous ERK1/2 in Cells with a Bioorthogonal Covalent Probe. Bioconjugate Chemistry, 2017, 28, 1677-1683.	1.8	10
68	Signaling by the tyrosine kinase Yes promotes liver cancer development. Science Signaling, 2022, 15, eabj4743.	1.6	7
69	Deregulated ERK1/2 MAP kinase signaling promotes aneuploidy by a Fbxw7β-Aurora A pathway. Cell Cycle, 2016, 15, 1631-1642.	1.3	5
70	Erk3 and Erk4. , 2018, , 1632-1638.		5
71	Erk2 signaling and early embryo stem cell self-renewal. Cell Cycle, 2004, 3, 241-3.	1.3	4
72	ERK3â€MK5 signaling regulates myogenic differentiation and muscle regeneration by promoting FoxO3 degradation. Journal of Cellular Physiology, 2022, 237, 2271-2287.	2.0	3

#	Article	IF	CITATIONS
73	Development of a high-throughput assay to identify inhibitors of the ubiquitin-conjugating enzyme UBCH10. SLAS Discovery, 2022, , .	1.4	2
74	Isolation of Mouse Embryonic Stem Cell Lines in the Study of ERK1/2 MAP Kinase Signaling. Methods in Molecular Biology, 2017, 1487, 243-253.	0.4	1
75	A simple approach for multi-targeted shRNA-mediated inducible knockdowns using Sleeping Beauty vectors. PLoS ONE, 2018, 13, e0205585.	1.1	1
76	Mitogen-Activated Protein Kinases. , 2018, , 3138-3141.		1
77	YES, a novel therapeutic target in hepatocellular carcinoma. Molecular and Cellular Oncology, 2022, 9, 2069993.	0.3	1
78	The ERK1/2 MAP Kinase Signaling Pathway in Tumor Progression and Metastasis. Cancer Metastasis - Biology and Treatment, 2010, , 25-40.	0.1	0
79	Erk3 and Erk4. , 2016, , 1-6.		Ο
80	Mitogen-Activated Protein Kinases. , 2016, , 1-4.		0
81	Cover Image, Volume 237, Number 4, April 2022. Journal of Cellular Physiology, 2022, 237, .	2.0	0