List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5363327/publications.pdf Version: 2024-02-01

Τομριι Ιςμιτανι

#	Article	IF	CITATIONS
1	A novel role for PRL in regulating epithelial cell density by inducing apoptosis at confluence. Journal of Cell Science, 2022, 135, .	2.0	4
2	Zebrafish imaging reveals TP53 mutation switching oncogene-induced senescence from suppressor to driver in primary tumorigenesis. Nature Communications, 2022, 13, 1417.	12.8	11
3	Extracellular ATP facilitates cell extrusion from epithelial layers mediated by cell competition or apoptosis. Current Biology, 2022, 32, 2144-2159.e5.	3.9	16
4	Calcium sparks enhance the tissue fluidity within epithelial layers and promote apical extrusion of transformed cells. Cell Reports, 2022, 40, 111078.	6.4	3
5	β-catenin-promoted cholesterol metabolism protects against cellular senescence in naked mole-rat cells. Communications Biology, 2021, 4, 357.	4.4	12
6	Leucyl-tRNA synthetase deficiency systemically induces excessive autophagy in zebrafish. Scientific Reports, 2021, 11, 8392.	3.3	4
7	CDK19-related disorder results from both loss-of-function and gain-of-function de novo missense variants. Genetics in Medicine, 2021, 23, 1050-1057.	2.4	7
8	Pathogenesis of CDK8-associated disorder: two patients with novel CDK8 variants and in vitro and in vivo and in vitro and in vivo functional analyses of the variants. Scientific Reports, 2020, 10, 17575.	3.3	7
9	A phospho-switch controls RNF43-mediated degradation of Wnt receptors to suppress tumorigenesis. Nature Communications, 2020, 11, 4586.	12.8	40
10	A novel method to purify neutrophils enables functional analysis of zebrafish hematopoiesis. Genes To Cells, 2020, 25, 770-781.	1.2	2
11	Exosc2 deficiency leads to developmental disorders by causing a nucleotide pool imbalance in zebrafish. Biochemical and Biophysical Research Communications, 2020, 533, 1470-1476.	2.1	7
12	Intracellular pH controls WNT downstream of glycolysis in amniote embryos. Nature, 2020, 584, 98-101.	27.8	95
13	Tyrosine pre-transfer RNA fragments are linked to p53-dependent neuronal cell death via PKM2. Biochemical and Biophysical Research Communications, 2020, 525, 726-732.	2.1	16
14	Calcium Wave Promotes Cell Extrusion. Current Biology, 2020, 30, 670-681.e6.	3.9	66
15	Cell competition corrects noisy Wnt morphogen gradients to achieve robust patterning in the zebrafish embryo. Nature Communications, 2019, 10, 4710.	12.8	56
16	Horizontal Boundary Cells, a Special Group of Somitic Cells, Play Crucial Roles in the Formation of Dorsoventral Compartments in Teleost Somite. Cell Reports, 2019, 27, 928-939.e4.	6.4	2
17	Pharmacological enhancement of retinoid-related orphan receptor α function mitigates spinocerebellar ataxia type 3 pathology. Neurobiology of Disease, 2019, 121, 263-273.	4.4	17
18	Purification of zebrafish erythrocytes as a means of identifying a novel regulator of haematopoiesis. British Journal of Haematology, 2018, 180, 420-431.	2.5	8

#	Article	IF	CITATIONS
19	Zebrafish Wnt/ \hat{l}^2 -Catenin Signaling Reporters Facilitate Understanding of In Vivo Dynamic Regulation and Discovery of Therapeutic Agents. , 2018, , 3-16.		0
20	Involvement of sonic hedgehog and notch signaling in regenerative neurogenesis in adult zebrafish optic tectum after stab injury. Journal of Comparative Neurology, 2018, 526, 2360-2372.	1.6	14
21	NLK. , 2018, , 3507-3515.		0
22	Induction of intrinsic apoptosis in leukaemia stem cells and in vivo zebrafish model by betulonic acid isolated from Walsura pinnata Hassk (Meliaceae). Phytomedicine, 2017, 26, 11-21.	5.3	17
23	Wip1 directly dephosphorylates NLK and increases Wnt activity during germ cell development. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1013-1022.	3.8	10
24	Context-dependent regulation of the β-catenin transcriptional complex supports diverse functions of Wnt/β-catenin signaling. Journal of Biochemistry, 2017, 161, 9-17.	1.7	31
25	Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. Journal of Clinical Investigation, 2016, 127, 137-152.	8.2	190
26	NLK. , 2016, , 1-9.		0
27	Post-translational Modification of Tcf/Lef: New Insights into the Regulation of Wnt/β-Catenin Signaling. , 2015, , 327-342.		1
28	Biochemical Characterization of Three BLT Receptors in Zebrafish. PLoS ONE, 2015, 10, e0117888.	2.5	22
29	<i>In vivo</i> RNAi screen identifies NLK as a negative regulator of mesenchymal activity in glioblastoma. Oncotarget, 2015, 6, 20145-20159.	1.8	23
30	Role of the ANKMY2-FKBP38 Axis in Regulation of the Sonic Hedgehog (Shh) Signaling Pathway. Journal of Biological Chemistry, 2014, 289, 25639-25654.	3.4	15
31	Hipk2 and PP1c Cooperate to Maintain Dvl Protein Levels Required for Wnt Signal Transduction. Cell Reports, 2014, 8, 1391-1404.	6.4	30
32	Identification and Characterization of a Novel Small-Molecule Inhibitor of Î ² -Catenin Signaling. American Journal of Pathology, 2014, 184, 2111-2122.	3.8	32
33	Context-Dependent Bidirectional Modulation of Wnt/β-Catenin Signaling. , 2014, , 213-225.		1
34	Wnt/Dkk Negative Feedback Regulates Sensory Organ Size in Zebrafish. Current Biology, 2013, 23, 1559-1565.	3.9	70
35	Nemo-like kinase, a multifaceted cell signaling regulator. Cellular Signalling, 2013, 25, 190-197.	3.6	61
36	NLK positively regulates Wnt/β-catenin signalling by phosphorylating LEF1 in neural progenitor cells. EMBO Journal, 2012, 31, 1904-1915.	7.8	69

#	Article	IF	CITATIONS
37	Visualization and exploration of Tcf/Lef function using a highly responsive Wnt/\hat{l}^2 -catenin signaling-reporter transgenic zebrafish. Developmental Biology, 2012, 370, 71-85.	2.0	124
38	Dual functions of DP1 promote biphasic Wnt-on and Wnt-off states during anteroposterior neural patterning. EMBO Journal, 2012, 31, 3384-3397.	7.8	20
39	Context-dependent dual and opposite roles of nemo-like kinase in the Wnt/β-catenin signaling. Cell Cycle, 2012, 11, 1743-1745.	2.6	8
40	DEAD-Box Protein Ddx46 Is Required for the Development of the Digestive Organs and Brain in Zebrafish. PLoS ONE, 2012, 7, e33675.	2.5	25
41	Cold exposure down-regulates zebrafish pigmentation. Genes To Cells, 2011, 16, 358-367.	1.2	11
42	Zebrafish Dmrta2 regulates neurogenesis in the telencephalon. Genes To Cells, 2011, 16, 1097-1109.	1.2	48
43	Homodimerization of Nemo-like kinase is essential for activation and nuclear localization. Molecular Biology of the Cell, 2011, 22, 266-277.	2.1	28
44	Nemo-like kinase suppresses Notch signalling by interfering with formation of the Notch active transcriptional complex. Nature Cell Biology, 2010, 12, 278-285.	10.3	110
45	Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions. Development (Cambridge), 2010, 137, 2527-2537.	2.5	80
46	KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes and Development, 2010, 24, 432-437.	5.9	135
47	Nemo-Like Kinase, an Essential Effector of Anterior Formation, Functions Downstream of p38 Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 2010, 30, 675-683.	2.3	20
48	Cold exposure down-regulates zebrafish hematopoiesis. Biochemical and Biophysical Research Communications, 2010, 394, 859-864.	2.1	20
49	Delta1 family members are involved in filopodial actin formation and neuronal cell migration independent of Notch signaling. Biochemical and Biophysical Research Communications, 2010, 398, 118-124.	2.1	2
50	Homeodomain-interacting protein kinases (Hipks) promote Wnt/Wg signaling through stabilization of β-catenin/Arm and stimulation of target gene expression. Development (Cambridge), 2009, 136, 241-251.	2.5	74
51	Nemoâ€like kinase is involved in NGFâ€induced neurite outgrowth via phosphorylating MAP1B and paxillin. Journal of Neurochemistry, 2009, 111, 1104-1118.	3.9	56
52	Nrarp functions to modulate neural-crest-cell differentiation by regulating LEF1 protein stability. Nature Cell Biology, 2005, 7, 1106-1112.	10.3	74
53	STAT3 regulates Nemo-like kinase by mediating its interaction with IL-6-stimulated TGFÂ-activated kinase 1 for STAT3 Ser-727 phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4524-4529.	7.1	76
54	Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK. Genes and Development, 2004, 18, 816-829.	5.9	151

#	Article	IF	CITATIONS
55	Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO Journal, 2003, 22, 6277-6288.	7.8	242
56	The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the Wnt-5a/Ca ²⁺ Pathway To Antagonize Wnt/β-Catenin Signaling. Molecular and Cellular Biology, 2003, 23, 131-139.	2.3	503
57	Regulation of Lymphoid Enhancer Factor 1/T-Cell Factor by Mitogen-Activated Protein Kinase-Related Nemo-Like Kinase-Dependent Phosphorylation in Wnt/β-Catenin Signaling. Molecular and Cellular Biology, 2003, 23, 1379-1389.	2.3	202
58	MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature, 1999, 399, 793-797.	27.8	263
59	The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature, 1999, 399, 798-802.	27.8	569
60	<i>De novo</i> non-synonymous CTR9 variants are associated with motor delay and macrocephaly: human genetic and zebrafish experimental evidence. Human Molecular Genetics, 0, , .	2.9	0