Michael Winkler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5362321/publications.pdf

Version: 2024-02-01

430874 434195 32 1,856 18 31 citations h-index g-index papers 35 35 35 3138 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Spike Protein of the Emerging Betacoronavirus EMC Uses a Novel Coronavirus Receptor for Entry, Can Be Activated by TMPRSS2, and Is Targeted by Neutralizing Antibodies. Journal of Virology, 2013, 87, 5502-5511.	3.4	305
2	TMPRSS2 Activates the Human Coronavirus 229E for Cathepsin-Independent Host Cell Entry and Is Expressed in Viral Target Cells in the Respiratory Epithelium. Journal of Virology, 2013, 87, 6150-6160.	3.4	296
3	Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine, 2021, 65, 103255.	6.1	256
4	IFITM Proteins Inhibit Entry Driven by the MERS-Coronavirus Spike Protein: Evidence for Cholesterol-Independent Mechanisms. Viruses, 2014, 6, 3683-3698.	3.3	123
5	Guanylate-Binding Proteins 2 and 5 Exert Broad Antiviral Activity by Inhibiting Furin-Mediated Processing of Viral Envelope Proteins. Cell Reports, 2019, 27, 2092-2104.e10.	6.4	112
6	Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2. PLoS ONE, 2017, 12, e0179177.	2.5	71
7	Open Reading Frame UL26 of Human Cytomegalovirus Encodes a Novel Tegument Protein That Contains a Strong Transcriptional Activation Domain. Journal of Virology, 2002, 76, 4836-4847.	3.4	70
8	Interferon-Induced Transmembrane Protein–Mediated Inhibition of Host Cell Entry of Ebolaviruses. Journal of Infectious Diseases, 2015, 212, S210-S218.	4.0	58
9	Functional Interaction between Pleiotropic Transactivator pUL69 of Human Cytomegalovirus and the Human Homolog of Yeast Chromatin Regulatory Protein SPT6. Journal of Virology, 2000, 74, 8053-8064.	3.4	56
10	pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs. Journal of Virology, 2017, 91, .	3.4	54
11	Influenza A Virus Encoding Secreted Gaussia Luciferase as Useful Tool to Analyze Viral Replication and Its Inhibition by Antiviral Compounds and Cellular Proteins. PLoS ONE, 2014, 9, e97695.	2.5	50
12	TMPRSS11A activates the influenza A virus hemagglutinin and the MERS coronavirus spike protein and is insensitive against blockade by HAI-1. Journal of Biological Chemistry, 2018, 293, 13863-13873.	3.4	47
13	The glycoprotein of vesicular stomatitis virus promotes release of virus-like particles from tetherin-positive cells. PLoS ONE, 2017, 12, e0189073.	2.5	40
14	The Human Cytomegalovirus DNA Polymerase Processivity Factor UL44 Is Modified by SUMO in a DNA-Dependent Manner. PLoS ONE, 2012, 7, e49630.	2.5	34
15	Tetherin Sensitivity of Influenza A Viruses Is Strain Specific: Role of Hemagglutinin and Neuraminidase. Journal of Virology, 2015, 89, 9178-9188.	3.4	31
16	Influenza A Virus Does Not Encode a Tetherin Antagonist with Vpu-Like Activity and Induces IFN-Dependent Tetherin Expression in Infected Cells. PLoS ONE, 2012, 7, e43337.	2.5	28
17	A system for production of defective interfering particles in the absence of infectious influenza A virus. PLoS ONE, 2019, 14, e0212757.	2.5	27
18	Interaction of the Papillomavirus E8â^§E2C Protein with the Cellular CHD6 Protein Contributes to Transcriptional Repression. Journal of Virology, 2010, 84, 9505-9515.	3.4	21

#	Article	IF	CITATIONS
19	Interferonâ€Induced Transmembrane Proteins Mediate Viral Evasion in Acute and Chronic Hepatitis C Virus Infection. Hepatology, 2019, 70, 1506-1520.	7.3	21
20	Analysis of IFITM-IFITM Interactions by a Flow Cytometry-Based FRET Assay. International Journal of Molecular Sciences, 2019, 20, 3859.	4.1	20
21	Cell culture-based production and in vivo characterization of purely clonal defective interfering influenza virus particles. BMC Biology, 2021, 19, 91.	3.8	18
22	H2 influenza A virus is not pathogenic in Tmprss2 knock-out mice. Virology Journal, 2020, 17, 56.	3.4	13
23	A GXXXA Motif in the Transmembrane Domain of the Ebola Virus Glycoprotein Is Required for Tetherin Antagonism. Journal of Virology, 2018, 92, .	3.4	12
24	Virion Background and Efficiency of Virion Incorporation Determine Susceptibility of Simian Immunodeficiency Virus Env-Driven Viral Entry to Inhibition by IFITM Proteins. Journal of Virology, 2017, 91, .	3.4	9
25	Rhesus macaque IFITM3 gene polymorphisms and SIV infection. PLoS ONE, 2017, 12, e0172847.	2.5	7
26	Evidence that two instead of one defective interfering RNA in influenza A virus-derived defective interfering particles (DIPs) does not enhance antiviral activity. Scientific Reports, 2021, 11, 20477.	3.3	7
27	Inhibitors of signal peptide peptidase and subtilisin/kexin-isozyme 1 inhibit Ebola virus glycoprotein-driven cell entry by interfering with activity and cellular localization of endosomal cathepsins. PLoS ONE, 2019, 14, e0214968.	2.5	5
28	A Fosmid-Based System for the Generation of Recombinant Cercopithecine Alphaherpesvirus 2 Encoding Reporter Genes. Viruses, 2019, 11, 1026.	3.3	5
29	Detection systems for antibody responses against herpes B virus. Primate Biology, 2017, 4, 9-16.	1.0	4
30	Role of rhesus macaque IFITM3(2) in simian immunodeficiency virus infection of macaques. PLoS ONE, 2019, 14, e0224082.	2.5	1
31	Characterisation of an Anti-Vaccinia Virus F13 Single Chain Fragment Variable from a Human Anti-Vaccinia Virus-Specific Recombinant Immunoglobulin Library. Viruses, 2022, 14, 197.	3.3	1
32	A Recombinant System and Reporter Viruses for Papiine Alphaherpesvirus 2. Viruses, 2022, 14, 91.	3.3	0