

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5362309/publications.pdf Version: 2024-02-01

YEROLI

#	Article	IF	CITATIONS
1	Arrested methanogenesis: Principles, practices, and perspectives. Advances in Bioenergy, 2022, , .	0.5	1
2	Multi-criteria assessment of food waste and waste paper anaerobic co-digestion: Effects of inoculation ratio, total solids content, and feedstock composition. Renewable Energy, 2022, 194, 40-50.	4.3	12
3	Integration of algae cultivation to anaerobic digestion for biofuel and bioenergy production. Advances in Bioenergy, 2021, , 199-300.	0.5	10
4	Effect of alkaline pretreatment on photo-fermentative hydrogen production from giant reed: Comparison of NaOH and Ca(OH)2. Bioresource Technology, 2020, 304, 123001.	4.8	46
5	Anaerobic Digestion of Food Waste for Bioenergy Production. , 2019, , 530-537.		4
6	Innovative sustainable conversion from CO2 and biodiesel-based crude glycerol waste to bio-based polycarbonates. Journal of CO2 Utilization, 2019, 34, 198-206.	3.3	13
7	Recent advances of "soft―bio-polycarbonate plastics from carbon dioxide and renewable bio-feedstocks via straightforward and innovative routes. Journal of CO2 Utilization, 2019, 34, 40-52.	3.3	42
8	Biological treatment of organic materials for energy and nutrients production—Anaerobic digestion and composting. Advances in Bioenergy, 2019, , 121-181.	0.5	47
9	Bio-based polycarbonates from renewable feedstocks and carbon dioxide. Advances in Bioenergy, 2019, , 183-208.	0.5	4
10	Comparative study of changes in composition and structure during sequential fungal pretreatment of non-sterile lignocellulosic feedstocks. Industrial Crops and Products, 2019, 133, 383-394.	2.5	24
11	Techno-economic analyses of solid-state anaerobic digestion and composting of yard trimmings. Waste Management, 2019, 85, 405-416.	3.7	31
12	Effects of outdoor dry bale storage conditions on corn stover and the subsequent biogas production from anaerobic digestion. Renewable Energy, 2019, 134, 276-283.	4.3	12
13	Thermal, Mechanical, and Morphological Properties of Rigid Crude Glycerolâ€Based Polyurethane Foams Reinforced With Nanoclay and Microcrystalline Cellulose. European Journal of Lipid Science and Technology, 2018, 120, 1700413.	1.0	23
14	Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renewable and Sustainable Energy Reviews, 2018, 89, 151-167.	8.2	220
15	Anaerobic digestion of food waste – Challenges and opportunities. Bioresource Technology, 2018, 247, 1047-1058.	4.8	626
16	Phosphorus Removal and Recovery From Anaerobic Digestion Residues. Advances in Bioenergy, 2018, , 77-136.	0.5	16
17	Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application. Advances in Bioenergy, 2018, 3, 161-213.	0.5	51
18	Synthesis and process optimization of soybean oil-based terminal epoxides for the production of new biodegradable polycarbonates via the intergration of CO 2. Industrial Crops and Products, 2017, 99, 34-40.	2.5	22

#	Article	IF	CITATIONS
19	Methanol Production from Biogas with a Thermotolerant Methanotrophic Consortium Isolated from an Anaerobic Digestion System. Energy & amp; Fuels, 2017, 31, 2970-2975.	2.5	28
20	Development and evaluation of a trickle bed bioreactor for enhanced mass transfer and methanol production from biogas. Biochemical Engineering Journal, 2017, 122, 103-114.	1.8	31
21	Biogas reforming of carbon dioxide to syngas production over Ni-Mg-Al catalysts. Molecular Catalysis, 2017, 436, 248-258.	1.0	39
22	Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum – Part I: Reactor performance. Bioresource Technology, 2017, 236, 186-193.	4.8	19
23	A novel 2,5-furandicarboxylic acid-based bis(cyclic carbonate) for the synthesis of biobased non-isocyanate polyurethanes. RSC Advances, 2017, 7, 37-46.	1.7	63
24	Draft Genome Sequence of <i>Methylocaldum</i> sp. SAD2, a Methanotrophic Strain That Can Convert Raw Biogas to Methanol in the Presence of Hydrogen Sulfide. Genome Announcements, 2017, 5, .	0.8	0
25	Comparison of sodium hydroxide and calcium hydroxide pretreatments of giant reed for enhanced enzymatic digestibility and methane production. Bioresource Technology, 2017, 244, 1150-1157.	4.8	45
26	Sustainable Approach for the Synthesis of Biopolycarbonates from Carbon Dioxide and Soybean Oil. ACS Sustainable Chemistry and Engineering, 2017, 5, 9014-9022.	3.2	17
27	Draft Genome Sequence of Methylocaldum sp. Strain 14B, an Obligate Hydrogen Sulfide-Tolerant Methanotrophic Strain That Can Convert Biogas to Methanol. Genome Announcements, 2017, 5, .	0.8	1
28	Synthesis and properties of polyurethane wood adhesives derived from crude glycerol-based polyols. International Journal of Adhesion and Adhesives, 2017, 79, 67-72.	1.4	30
29	Bio-polyols synthesized from crude glycerol and applications on polyurethane wood adhesives. Industrial Crops and Products, 2017, 108, 798-805.	2.5	47
30	Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum – Part II: Microbial diversity and succession. Bioresource Technology, 2017, 241, 1027-1035.	4.8	47
31	Comparison of digestate from solid anaerobic digesters and dewatered effluent from liquid anaerobic digesters as inocula for solid state anaerobic digestion of yard trimmings. Bioresource Technology, 2016, 200, 753-760.	4.8	46
32	Isolation of a methanotroph from a hydrogen sulfide-rich anaerobic digester for methanol production from biogas. Process Biochemistry, 2016, 51, 838-844.	1.8	51
33	Value-added conversion of waste cooking oil and post-consumer PET bottles into biodiesel and polyurethane foams. Waste Management, 2016, 52, 360-366.	3.7	41
34	Comparison between ensilage and fungal pretreatment for storage of giant reed and subsequent methane production. Bioresource Technology, 2016, 209, 246-253.	4.8	32
35	Fractal-like kinetics of the solid-state anaerobic digestion. Waste Management, 2016, 53, 55-61.	3.7	10
36	Recovery of failed solid-state anaerobic digesters. Bioresource Technology, 2016, 214, 866-870.	4.8	8

#	Article	IF	CITATIONS
37	Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production. Bioresource Technology, 2016, 216, 60-68.	4.8	72
38	Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives. Bioresource Technology, 2016, 205, 239-249.	4.8	204
39	Effect of harvest date on Arundo donax L. (giant reed) composition, ensilage performance, and enzymatic digestibility. Bioresource Technology, 2016, 205, 97-103.	4.8	28
40	Giant reed: A competitive energy crop in comparison with miscanthus. Renewable and Sustainable Energy Reviews, 2016, 54, 350-362.	8.2	86
41	Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresource Technology, 2016, 201, 50-57.	4.8	107
42	Value-added processing of crude glycerol into chemicals and polymers. Bioresource Technology, 2016, 215, 144-154.	4.8	213
43	Effect of total solids content on giant reed ensilage and subsequent anaerobic digestion. Process Biochemistry, 2016, 51, 73-79.	1.8	14
44	Fungal pretreatment of non-sterile miscanthus for enhanced enzymatic hydrolysis. Bioresource Technology, 2016, 203, 118-123.	4.8	48
45	Corrosion Protection Studies of Crude Glycerol-Based Waterborne Polyurethane Coating on Steel Substrate. Journal of the Electrochemical Society, 2016, 163, C54-C61.	1.3	9
46	Impact of different ratios of feedstock to liquid anaerobic digestion effluent on the performance and microbiome of solid-state anaerobic digesters digesting corn stover. Bioresource Technology, 2016, 200, 744-752.	4.8	47
47	The application of the fractal-like kinetics to solid-state anaerobic digestion. Proceedings of the Water Environment Federation, 2016, 2016, 46-54.	0.0	0
48	Effect of Feedstock Components on Thermophilic Solid-State Anaerobic Digestion of Yard Trimmings. Energy & Fuels, 2015, 29, 3699-3706.	2.5	21
49	Integration of Shiitake cultivation and solid-state anaerobic digestion for utilization of woody biomass. Bioresource Technology, 2015, 182, 128-135.	4.8	38
50	Development of blend films from soy meal protein and crude glycerol-based waterborne polyurethane. Industrial Crops and Products, 2015, 67, 11-17.	2.5	28
51	Effect of limited air exposure and comparative performance between thermophilic and mesophilic solid-state anaerobic digestion of switchgrass. Bioresource Technology, 2015, 180, 296-303.	4.8	57
52	Fungal Pretreatment of Albizia Chips for Enhanced Biogas Production by Solid-State Anaerobic Digestion. Energy & Fuels, 2015, 29, 200-204.	2.5	54
53	Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 2015, 44, 824-834.	8.2	305
54	The NAC transcription factor OsSWN1 regulates secondary cell wall development in Oryza sativa. Journal of Plant Biology, 2015, 58, 44-51.	0.9	63

#	Article	IF	CITATIONS
55	Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures. Applied Microbiology and Biotechnology, 2015, 99, 969-980.	1.7	104
56	Effect of urea addition on giant reed ensilage and subsequent methane production by anaerobic digestion. Bioresource Technology, 2015, 192, 682-688.	4.8	38
57	Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Management, 2015, 44, 94-115.	3.7	207
58	Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium. Bioresource Technology, 2015, 191, 146-156.	4.8	42
59	Synthesis of tungsten carbide nanoparticles in biochar matrix as a catalyst for dry reforming of methane to syngas. Catalysis Science and Technology, 2015, 5, 3270-3280.	2.1	42
60	Solid-state anaerobic digestion of fungal pretreated Miscanthus sinensis harvested in two different seasons. Bioresource Technology, 2015, 185, 211-217.	4.8	52
61	Mathematical modeling of solid-state anaerobic digestion. Progress in Energy and Combustion Science, 2015, 51, 49-66.	15.8	65
62	Polyols and Polyurethanes from Vegetable Oils and Their Derivatives. Springer Briefs in Molecular Science, 2015, , 15-43.	0.1	29
63	Lignocellulosic Biomass-Based Polyols for Polyurethane Applications. Springer Briefs in Molecular Science, 2015, , 45-64.	0.1	1
64	Introduction to Bio-based Polyols and Polyurethanes. Springer Briefs in Molecular Science, 2015, , 1-13.	0.1	5
65	Polyols and Polyurethanes from Protein-Based Feedstocks. Springer Briefs in Molecular Science, 2015, , 65-79.	0.1	1
66	Bio-based Polyols and Polyurethanes. Springer Briefs in Molecular Science, 2015, , .	0.1	58
67	Integration of biological kinetics and computational fluid dynamics to model the growth of <i>Nannochloropsis salina</i> in an open channel raceway. Biotechnology and Bioengineering, 2015, 112, 923-933.	1.7	33
68	Highly active and stable Ni-based bimodal pore catalyst for dry reforming of methane. Applied Catalysis A: General, 2015, 491, 116-126.	2.2	94
69	Comparison of premixing methods for solid-state anaerobic digestion of corn stover. Bioresource Technology, 2015, 175, 430-435.	4.8	29
70	Production of polyols and waterborne polyurethane dispersions from biodieselâ€derived crude glycerol. Journal of Applied Polymer Science, 2015, 132, .	1.3	15
71	Polyurethane foams based on crude glycerol-derived biopolyols: One-pot preparation of biopolyols with branched fatty acid ester chains and its effects on foam formation and properties. Polymer, 2014, 55, 6529-6538.	1.8	50
72	Polyols and polyurethane foams from acidâ€eatalyzed biomass liquefaction by crude glycerol: Effects of crude glycerol impurities. Journal of Applied Polymer Science, 2014, 131, .	1.3	12

#	Article	IF	CITATIONS
73	Fungal pretreatment of unsterilized yard trimmings for enhanced methane production by solid-state anaerobic digestion. Bioresource Technology, 2014, 158, 248-252.	4.8	74
74	Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 2014, 42, 35-53.	15.8	1,023
75	Synthesis and Characterization of Polyols and Polyurethane Foams from PET Waste and Crude Glycerol. Journal of Polymers and the Environment, 2014, 22, 318-328.	2.4	57
76	Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams. Bioresource Technology, 2014, 161, 410-415.	4.8	101
77	Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol impurities. Industrial Crops and Products, 2014, 57, 188-194.	2.5	71
78	Effects of microbial and non-microbial factors of liquid anaerobic digestion effluent as inoculum on solid-state anaerobic digestion of corn stover. Bioresource Technology, 2014, 157, 188-196.	4.8	72
79	Effect of outdoor conditions on Nannochloropsis salina cultivation in artificial seawater using nutrients from anaerobic digestion effluent. Bioresource Technology, 2014, 152, 154-161.	4.8	47
80	Polyols and Polyurethanes from the Liquefaction of Lignocellulosic Biomass. ChemSusChem, 2014, 7, 66-72.	3.6	152
81	Biogas energy production from tropical biomass wastes by anaerobic digestion. Bioresource Technology, 2014, 169, 38-44.	4.8	42
82	Solid-state anaerobic co-digestion of spent mushroom substrate with yard trimmings and wheat straw for biogas production. Bioresource Technology, 2014, 169, 468-474.	4.8	81
83	Comparison of solid-state anaerobic digestion and composting of yard trimmings with effluent from liquid anaerobic digestion. Bioresource Technology, 2014, 169, 439-446.	4.8	45
84	Anaerobic digestion of giant reed for methane production. Bioresource Technology, 2014, 171, 233-239.	4.8	65
85	Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters. Bioresource Technology, 2014, 173, 168-176.	4.8	105
86	Biological conversion of methane to liquid fuels: Status and opportunities. Biotechnology Advances, 2014, 32, 1460-1475.	6.0	123
87	Progress and perspectives in converting biogas to transportation fuels. Renewable and Sustainable Energy Reviews, 2014, 40, 1133-1152.	8.2	315
88	Solid-state anaerobic co-digestion of hay and soybean processing waste for biogas production. Bioresource Technology, 2014, 154, 240-247.	4.8	100
89	Fungal pretreatment of yard trimmings for enhancement of methane yield from solid-state anaerobic digestion. Bioresource Technology, 2014, 156, 176-181.	4.8	85
90	A theoretical derivation of the Contois equation for kinetic modeling of the microbial degradation of insoluble substrates. Biochemical Engineering Journal, 2014, 82, 134-138.	1.8	36

#	Article	IF	CITATIONS
91	A mass diffusion-based interpretation of the effect of total solids content on solid-state anaerobic digestion of cellulosic biomass. Bioresource Technology, 2014, 167, 178-185.	4.8	88
92	Biodegradability of crude glycerol-based polyurethane foams during composting, anaerobic digestion and soil incubation. Polymer Degradation and Stability, 2014, 102, 195-203.	2.7	51
93	White-rot fungi: the key to sustainable biofuel production?. Biofuels, 2013, 4, 247-250.	1.4	10
94	Comparison of Synechocystis sp. PCC6803 and Nannochloropsis salina for lipid production using artificial seawater and nutrients from anaerobic digestion effluent. Bioresource Technology, 2013, 144, 255-260.	4.8	81
95	Thermochemical conversion of crude glycerol to biopolyols for the production of polyurethane foams. Bioresource Technology, 2013, 139, 323-329.	4.8	100
96	Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover. Bioresource Technology, 2013, 144, 281-287.	4.8	57
97	Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover. Waste Management, 2013, 33, 26-32.	3.7	109
98	Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresource Technology, 2013, 136, 574-581.	4.8	116
99	Solid-State Biological Pretreatment of Lignocellulosic Biomass. Springer Briefs in Molecular Science, 2013, , 67-86.	0.1	3
100	Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 2013, 19, 360-369.	8.2	1,200
101	Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Applied Energy, 2013, 108, 486-492.	5.1	142
102	Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresource Technology, 2013, 127, 275-280.	4.8	301
103	Hydrogen sulfide removal from biogas by bio-based iron sponge. Biosystems Engineering, 2013, 114, 55-59.	1.9	50
104	Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances, 2012, 30, 1447-1457.	6.0	426
105	Methane production from solid-state anaerobic digestion ofÂlignocellulosic biomass. Biomass and Bioenergy, 2012, 46, 125-132.	2.9	211
106	Solid-state co-digestion of expired dog food and corn stover for methane production. Bioresource Technology, 2012, 118, 219-226.	4.8	99
107	Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresource Technology, 2012, 124, 379-386.	4.8	280
108	Enzymatic Digestibility of Corn Stover Fractions in Response to Fungal Pretreatment. Industrial & Engineering Chemistry Research, 2012, 51, 7153-7159.	1.8	16

#	Article	IF	CITATIONS
109	Characterization of Crude Glycerol from Biodiesel Plants. Journal of Agricultural and Food Chemistry, 2012, 60, 5915-5921.	2.4	227
110	Co-production of Lactic Acid and Lactobacillus rhamnosus Cells from Whey Permeate with Nutrient Supplements. Food and Bioprocess Technology, 2012, 5, 1278-1286.	2.6	20
111	Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresource Technology, 2012, 103, 227-233.	4.8	179
112	Comparison of alkaline- and fungi-assisted wet-storage of corn stover. Bioresource Technology, 2012, 109, 98-104.	4.8	40
113	Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresource Technology, 2012, 111, 42-48.	4.8	182
114	Comparison of Horse Mulch to Wheat Straw as Feedstocks for Solid-State Anaerobic Digestion. , 2011, , , .		0
115	Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresource Technology, 2011, 102, 8828-8834.	4.8	163
116	Solid-state anaerobic digestion of spent wheat straw from horse stall. Bioresource Technology, 2011, 102, 9432-9437.	4.8	92
117	Effect of hot water extraction and liquid hot water pretreatment on the fungal degradation of biomass feedstocks. Bioresource Technology, 2011, 102, 9788-9793.	4.8	67
118	Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresource Technology, 2011, 102, 6254-6259.	4.8	171
119	Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresource Technology, 2011, 102, 7507-7512.	4.8	155
120	Concentration of ammoniacal nitrogen in effluent from wet scrubbers using reverse osmosis membrane. Biosystems Engineering, 2011, 109, 235-240.	1.9	9
121	Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresource Technology, 2011, 102, 1831-1836.	4.8	128
122	Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 2011, 15, 821-826.	8.2	788
123	Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease. Waste Management, 2011, 31, 1752-1758.	3.7	178
124	Development of polyurethane foam and its potential within the biofuels market. Biofuels, 2011, 2, 357-359.	1.4	7
125	Microbial Lactic Acid Production from Renewable Resources. , 2010, , 211-228.		12
126	Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme and Microbial Technology, 2010, 47, 31-36.	1.6	145

#	Article	IF	CITATIONS
127	Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresource Technology, 2010, 101, 6398-6403.	4.8	200
128	Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresource Technology, 2010, 101, 7523-7528.	4.8	319
129	Effect of water content on thermal behaviors of common buckwheat flour and starch. Journal of Food Engineering, 2009, 93, 242-248.	2.7	20
130	Effect of sucrose on dynamic mechanical characteristics of maize and potato starch films. Carbohydrate Polymers, 2009, 76, 239-243.	5.1	26
131	Succinic Acid Production from Cheese Whey using Actinobacillus succinogenes 130 Z. Applied Biochemistry and Biotechnology, 2008, 145, 111-119.	1.4	83
132	Separate and Concentrate Lactic Acid Using Combination of Nanofiltration and Reverse Osmosis Membranes. Applied Biochemistry and Biotechnology, 2008, 147, 1-9.	1.4	70
133	Liquefaction of crop residues for polyol production. BioResources, 2006, 1, 248-256.	0.5	60
134	Separation of cells and proteins from fermentation broth using ultrafiltration. Journal of Food Engineering, 2006, 75, 574-580.	2.7	37
135	Lactic Acid Recovery From Cheese Whey Fermentation Broth Using Combined Ultrafiltration and Nanofiltration Membranes. Applied Biochemistry and Biotechnology, 2006, 132, 985-996.	1.4	25
136	Lactic Acid Production from Cheese Whey by Immobilized Bacteria. Applied Biochemistry and Biotechnology, 2005, 122, 0529-0540.	1.4	27