Javad Dargahi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5362301/publications.pdf

Version: 2024-02-01

361413 377865 1,363 85 20 34 citations h-index g-index papers 86 86 86 1076 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design and development of a new piezoelectric linear Inchworm actuator. Mechatronics, 2005, 15, 651-681.	3.3	110
2	Discretely Loaded Beam-Type Optical Fiber Tactile Sensor for Tissue Manipulation and Palpation in Minimally Invasive Robotic Surgery. IEEE Sensors Journal, 2012, 12, 22-32.	4.7	86
3	A New Approach for Modeling Piezoresistive Force Sensors Based on Semiconductive Polymer Composites. IEEE/ASME Transactions on Mechatronics, 2012, 17, 572-581.	5.8	86
4	A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation. Journal of Sound and Vibration, 2007, 307, 972-982.	3.9	78
5	Tactile Sensors for Minimally Invasive Surgery: A Review of the State-of-the-Art, Applications, and Perspectives. IEEE Access, 2020, 8, 7682-7708.	4.2	72
6	MEMS Endoscopic Tactile Sensor: Toward <i>In-Situ</i> In-SituIn-VivoTissue Softness Characterization. IEEE Sensors Journal, 2009, 9, 1679-1687.	4.7	59
7	Haptic Telerobotic Cardiovascular Intervention: A Review of Approaches, Methods, and Future Perspectives. IEEE Reviews in Biomedical Engineering, 2020, 13, 32-50.	18.0	54
8	Theoretical and experimental analysis of a piezoelectric tactile sensor for use in endoscopic surgery. Sensor Review, 2004, 24, 74-83.	1.8	44
9	Hybrid piezoresistive-optical tactile sensor for simultaneous measurement of tissue stiffness and detection of tissue discontinuity in robot-assisted minimally invasive surgery. Journal of Biomedical Optics, 2017, 22, 077002.	2.6	39
10	Composite magnetorheological elastomers for tactile displays: Enhanced MR-effect through bi-layer composition. Composites Part B: Engineering, 2020, 190, 107888.	12.0	36
11	Toward Task Autonomy in Robotic Cardiac Ablation: Learning-Based Kinematic Control of Soft Tendon-Driven Catheters. Soft Robotics, 2021, 8, 340-351.	8.0	35
12	Modeling and testing of an endoscopic piezoelectric-based tactile sensor. Mechatronics, 2007, 17, 462-467.	3.3	33
13	Miniaturized Optical Force Sensor for Minimally Invasive Surgery With Learning-Based Nonlinear Calibration. IEEE Sensors Journal, 2020, 20, 3579-3592.	4.7	33
14	Magnetostriction-based force feedback for robot-assisted cardiovascular surgery using smart magnetorheological elastomers. Mechanical Systems and Signal Processing, 2021, 161, 107918.	8.0	33
15	Simultaneous measurement of acoustic and streaming velocities using synchronized PIV technique. Measurement Science and Technology, 2007, 18, 1811-1817.	2.6	32
16	Modelling and testing of a sensor capable of determining the stiffness of biological tissues. Canadian Journal of Electrical and Computer Engineering, 2007, 32, 45-51.	2.0	28
17	Analysis of regular and irregular acoustic streaming patterns in a rectangular enclosure. Wave Motion, 2009, 46, 312-322.	2.0	24
18	Sensitivity analysis of a novel tactile probe for measurement of tissue softness with applications in biomedical robotics. Journal of Materials Processing Technology, 2007, 183, 176-182.	6.3	23

#	Article	IF	Citations
19	Measurement of the acoustic velocity field of nonlinear standing waves using the synchronized PIV technique. Experimental Thermal and Fluid Science, 2008, 33, 123-131.	2.7	21
20	Development and assessment of a stiffness display system for minimally invasive surgery based on smart magneto-rheological elastomers. Materials Science and Engineering C, 2020, 108, 110409.	7.3	21
21	Graphical display of tactile sensing data with application in minimally invasive surgery. Canadian Journal of Electrical and Computer Engineering, 2007, 32, 151-155.	2.0	18
22	Sensor-free Force Control of Tendon-driven Ablation Catheters through Position Control and Contact Modeling., 2020, 2020, 5248-5251.		18
23	Influence of differentially heated horizontal walls on the streaming shape and velocity in a standing wave resonator. International Communications in Heat and Mass Transfer, 2008, 35, 1061-1064.	5.6	17
24	A Sensor-less Catheter Contact Force Estimation Approach in Endovascular Intervention Procedures. , 2018, , .		17
25	Effects of transverse temperature gradient on acoustic and streaming velocity fields in a resonant cavity. Applied Physics Letters, 2008, 93, 051902.	3.3	16
26	Upcoming methods and specifications of continuous intraocular pressure monitoring systems for glaucoma. Journal of Ophthalmic and Vision Research, 2018, 13, 66.	1.0	16
27	Sensing principle for real-time characterization of viscoelasticity in the beating myocardial tissue. , 2017, , .		15
28	Displacement-based Model for Estimation of Contact Force Between RFA Catheter and Atrial Tissue with ex-vivo Validation. , 2019, , .		15
29	Viscoelastic Modeling of the Contact Interaction Between a Tactile Sensor and an Atrial Tissue. IEEE Transactions on Biomedical Engineering, 2012, 59, 1727-1738.	4.2	14
30	Image-based Estimation of Contact Forces on Catheters for Robot-assisted Cardiovascular Intervention. , 0 , , .		14
31	Towards Skill Transfer via Learning-Based Guidance in Human-Robot Interaction: An Application to Orthopaedic Surgical Drilling Skill. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 98, 667-678.	3.4	12
32	Integral-Free Spatial Orientation Estimation Method and Wearable Rotation Measurement Device for Robot-Assisted Catheter Intervention. IEEE/ASME Transactions on Mechatronics, 2022, 27, 766-776.	5.8	12
33	An approach to directional drilling simulation: finite element and finite segment methods with contact. Computational Mechanics, 2016, 57, 1001-1015.	4.0	11
34	Deep Learning-Based Haptic Guidance for Surgical Skills Transfer. Frontiers in Robotics and AI, 2020, 7, 586707.	3.2	11
35	Optical Fiber Array Sensor for Lateral and Circumferential Force Measurement Suitable for Minimally Invasive Surgery: Design, Modeling and Analysis. , 2016, , .		11
36	Analysis of the flow structure inside the valveless standing wave pump. Physics of Fluids, 2008, 20, .	4.0	10

#	Article	IF	CITATIONS
37	A portable low-cost 3D-printed wrist rehabilitation robot: Design and development. Mechanism and Machine Theory, 2022, 171, 104719.	4.5	10
38	Micro-optical force distribution sensing suitable for lump/artery detection. Biomedical Microdevices, 2015, 17, 10.	2.8	9
39	A multi-purpose optical microsystem for static and dynamic tactile sensing. Sensors and Actuators A: Physical, 2015, 235, 37-47.	4.1	9
40	An integrated force-position tactile sensor for improving diagnostic and therapeutic endoscopic surgery. Bio-Medical Materials and Engineering, 2004, 14, 151-66.	0.6	9
41	3D Suspended Polymeric Microfluidics (SPMF3) with Flow Orthogonal to Bending (FOB) for Fluid Analysis through Kinematic Viscosity. Applied Sciences (Switzerland), 2017, 7, 1048.	2.5	8
42	Optomechanical Modeling and Validation of a Distributed Bragg Reflector Force Sensor With Drift and Temperature Compensation. IEEE Sensors Journal, 2021, 21, 2929-2941.	4.7	8
43	Image-Based Optical-Fiber Force Sensor for Minimally Invasive Surgery with ex-vivo Validation. Journal of the Electrochemical Society, 2020, 167, 127504.	2.9	8
44	Analytical Tip Force Estimation on Tendon-driven Catheters Through Inverse Solution of Cosserat Rod Model., 2021,,.		8
45	A FOURTH-ORDER ACCURATE SCHEME FOR SOLVING ONE-DIMENSIONAL HIGHLY NONLINEAR STANDING WAVE EQUATION IN DIFFERENT THERMOVISCOUS FLUIDS. Journal of Computational Acoustics, 2008, 16, 563-576.	1.0	7
46	Extracting of Sagging Profile of Overhead Power Transmission Line Via Image Processing. , 2018, , .		7
47	Dynamics and stability of imperfect flexible cylinders in axial flow. Journal of Fluids and Structures, 2021, 105, 103321.	3.4	7
48	Optimization of the geometry of total knee implant in the sagittal plane using FEA. Bio-Medical Materials and Engineering, 2003, 13, 439-49.	0.6	7
49	Innovative optical microsystem for static and dynamic tissue diagnosis in minimally invasive surgical operations. Journal of Biomedical Optics, 2012, 17, 081416.	2.6	6
50	Parametric study on fluid structure interaction of a 3D suspended polymeric microfluidics (SPMF3). Microsystem Technologies, 2018, 24, 2549-2559.	2.0	6
51	Investigations on the Grasping Contact Analysis of Biological Tissues With Applications in Minimally Invasive Surgery. American Journal of Applied Sciences, 2007, 4, 1016-1023.	0.2	6
52	Bending-based formulation of light intensity modulation for miniaturization of optical tactile sensors. , $2018, \ldots$		6
53	Biomechanical effect of posterior elements and ligamentous tissues of lumbar spine on load sharing. Bio-Medical Materials and Engineering, 2005, 15, 145-58.	0.6	6
54	Gesture-Based Adaptive Haptic Guidance: A Comparison of Discriminative and Generative Modeling Approaches. IEEE Robotics and Automation Letters, 2017, 2, 1015-1022.	5.1	5

#	Article	IF	Citations
55	Rigid and Elastic Microparticles Detection Using 3-D Suspended Polymeric Microfluidics (SPMF ³) Sensor. IEEE Sensors Journal, 2018, 18, 5674-5684.	4.7	5
56	Force Estimation on Steerable Catheters through Learning-from-Simulation with ex-vivo Validation. , 2021, , .		5
57	Analytical Modeling and Experimental Validation of a Gelatin-based Shape Sensor for Soft Robots. , 2022, , .		5
58	An endoscopic grasper with corrugated plate-shaped tactile sensors. Journal of Mechanics of Materials and Structures, 2009, 4, 913-926.	0.6	4
59	Validation of a Variable Bending Radius Sensing Principle for Optical-fiber Tactile Sensors. , 2019, , .		4
60	Y-Net: A Deep Convolutional Architecture for 3D Estimation of Contact Forces in Intracardiac Catheters. IEEE Robotics and Automation Letters, 2022, 7, 3592-3599.	5.1	4
61	Design and Fabrication of Piezoelectric-based Tactile Sensor for Detecting Compliance., 2006,,.		3
62	Optical Fiber Array Sensor for Force Estimation and Localization in TAVI Procedure: Design, Modeling, Analysis and Validation. Sensors, 2021, 21, 5377.	3.8	3
63	Design and Optimization of a Linear Wavenumber Spectrometer with Cylindrical Optics for Line Scanning Optical Coherence Tomography. Sensors, 2021, 21, 6463.	3.8	3
64	A Vision-Based Method For Estimating Contact Forces In Intracardiac Catheters. , 2021, , .		3
65	Camera-Based Optical-Fiber Tactile Sensor for Intraoperative Grasping Force Measurement. ECS Meeting Abstracts, 2020, MA2020-01, 2382-2382.	0.0	3
66	A novel tactile softness display for minimally invasive surgery. Mechatronics, 2014, 24, 1144-1156.	3.3	2
67	Flow force augmented 3D suspended polymeric microfluidic (SPMF ³) platform. Electrophoresis, 2019, 40, 388-400.	2.4	2
68	Design of an All-reflective Line Based Spectrometer for Optical Coherence Tomography. , 2020, , .		2
69	A Deep Learning Force Estimator System for Intracardiac Catheters. , 2021, , .		2
70	A Novel Tactile Probe with Applications in Biomedical Robotics. , 2006, , .		1
71	Localization of annulus with a tactile sensor. , 2011, , .		1
72	Fiber-mirror integrated compliant mechanical system for measuring force and displacement simultaneously. , 2015, , .		1

#	Article	IF	Citations
73	Pretensioned Structures as Multi Axis Force Sensors. , 2017, , .		1
74	Software Failures Prediction in Self-Driving Vehicles. , 2020, , .		1
75	Unsteady simulation of distal blood flow in an end-to-side anastomosed coronary bypass graft with stenosis. Bio-Medical Materials and Engineering, 2006, 16, 337-47.	0.6	1
76	Modeling and simulation of blood flow in a sac-type left ventricular assist device. Bio-Medical Materials and Engineering, 2007, 17, 229-33.	0.6	1
77	Graphical representation of tactile sensing data in minimally invasive surgery. , 2007, , .		O
78	A novel method in exploration of arteries inside a tissue and assessment of the arteries by computational approach. , 2010, , .		0
79	A proof-of-principle robot with potential for the development of a hand-held tactile instrument for minimally-invasive artery cross-clamping. Journal of Medical Engineering and Technology, 2014, 38, 295-301.	1.4	0
80	Real-Time 2D Surface Profile Mapping of Biological Tissue with Force Feedback in Robot-Assisted Minimally Invasive Surgery. Applied Mechanics and Materials, 2015, 798, 319-323.	0.2	0
81	Analysis of the effects of different materials in a tooth implant-supported fixed prosthesis using finite element method. Bio-Medical Materials and Engineering, 2005, 15, 317-31.	0.6	O
82	Modeling of chemical control of human respiratory system. Bio-Medical Materials and Engineering, 2005, 15, 467-81.	0.6	0
83	Elastodynamic analysis of the human aorta and the effect of biomechanical parameters on its behavior. Bio-Medical Materials and Engineering, 2007, 17, 235-40.	0.6	O
84	Design of a Linear Wavenumber Spectrometer for Line Scanning Optical Coherence Tomography with 50 mm Focal Length Cylindrical Optics. Sensors, 2022, 22, 3278.	3.8	0
85	Microfabrication Bonding Process Optimization for a 3D Multi-Layer PDMS Suspended Microfluidics. Applied Sciences (Switzerland), 2022, 12, 4626.	2.5	0