Matilde Esther LLeonart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5361504/publications.pdf

Version: 2024-02-01

84 papers 5,702 citations

35 h-index 76900 74 g-index

85 all docs

85 does citations

85 times ranked 11097 citing authors

#	Article	IF	CITATIONS
1	TSPAN1, a novel tetraspanin member highly involved in carcinogenesis and chemoresistance. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188674.	7.4	5
2	RNA-binding proteins: Underestimated contributors in tumorigenesis. Seminars in Cancer Biology, 2022, 86, 431-444.	9.6	14
3	Targeting the "undruggable― RNA-binding proteins in the spotlight in cancer therapy. Seminars in Cancer Biology, 2022, 86, 69-83.	9.6	11
4	Understanding RNA-binding proteins. Seminars in Cancer Biology, 2022, 86, 135-136.	9.6	2
5	Cold-inducible RNA binding protein promotes breast cancer cell malignancy by regulating Cystatin C levels. Rna, 2021, 27, 190-201.	3.5	20
6	Editorial: How Do Metabolism, Angiogenesis, and Hypoxia Modulate Resistance?. Frontiers in Oncology, 2021, 11, 671222.	2.8	3
7	Characterization of genetically modified mice for phosphoglycerate mutase, a vitally-essential enzyme in glycolysis. PLoS ONE, 2021, 16, e0250856.	2.5	10
8	SDCBP Modulates Stemness and Chemoresistance in Head and Neck Squamous Cell Carcinoma through Src Activation. Cancers, 2021, 13, 4952.	3.7	11
9	Insights into new mechanisms and models of cancer stem cell multidrug resistance. Seminars in Cancer Biology, 2020, 60, 166-180.	9.6	188
10	Autophagy Takes Center Stage as a Possible Cancer Hallmark. Frontiers in Oncology, 2020, 10, 586069.	2.8	31
11	Phosphoglycerate Mutase Cooperates with Chk1 Kinase to Regulate Glycolysis. IScience, 2020, 23, 101306.	4.1	10
12	Five microRNAs in Serum Are Able to Differentiate Breast Cancer Patients From Healthy Individuals. Frontiers in Oncology, 2020, 10, 586268.	2.8	12
13	TSPAN1: A Novel Protein Involved in Head and Neck Squamous Cell Carcinoma Chemoresistance. Cancers, 2020, 12, 3269.	3.7	20
14	Therapy-Induced Modulation of the Tumor Microenvironment: New Opportunities for Cancer Therapies. Frontiers in Oncology, 2020, 10, 582884.	2.8	23
15	Tumor Profiling at the Service of Cancer Therapy. Frontiers in Oncology, 2020, 10, 595613.	2.8	9
16	Autophagy inhibition as a promising therapeutic target for laryngeal cancer. Carcinogenesis, 2019, 40, 1525-1534.	2.8	20
17	Common Metabolic Pathways Implicated in Resistance to Chemotherapy Point to a Key Mitochondrial Role in Breast Cancer*. Molecular and Cellular Proteomics, 2019, 18, 231-244.	3.8	34
18	The interplay between autophagy and tumorigenesis: exploiting autophagy as a means of anticancer therapy. Biological Reviews, 2018, 93, 152-165.	10.4	43

#	Article	IF	Citations
19	Reactive Oxygen Species-Mediated Autophagy Defines the Fate of Cancer Stem Cells. Antioxidants and Redox Signaling, 2018, 28, 1066-1079.	5.4	21
20	Otologic, audiometric and speech findings in patients undergoing surgery for cleft palate. BMC Pediatrics, 2018, 18, 350.	1.7	9
21	Expression patterns and bioinformatic analysis of miR-1260a and miR-1274a in Prostate Cancer Tunisian patients. Molecular Biology Reports, 2018, 45, 2345-2358.	2.3	17
22	DNA Methylomes Reveal Biological Networks Involved in Human Eye Development, Functions and Associated Disorders. Scientific Reports, 2017, 7, 11762.	3.3	44
23	Mitochondrial dysfunction and potential anticancer therapy. Medicinal Research Reviews, 2017, 37, 1275-1298.	10.5	36
24	Targeting cancer cells through antibiotics-induced mitochondrial dysfunction requires autophagy inhibition. Cancer Letters, 2017, 384, 60-69.	7.2	33
25	miR-99a reveals two novel oncogenic proteins E2F2 and EMR2 and represses stemness in lung cancer. Cell Death and Disease, 2017, 8, e3141-e3141.	6.3	78
26	The role of prostate tumor overexpressed 1 in cancer progression. Oncotarget, 2017, 8, 12451-12471.	1.8	9
27	Prostate Tumor Overexpressed-1 (PTOV1) promotes docetaxel-resistance and survival of castration resistant prostate cancer cells. Oncotarget, 2017, 8, 59165-59180.	1.8	15
28	Bypassing Mechanisms of Mitochondria-Mediated Cancer Stem Cells Resistance to Chemo- and Radiotherapy. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	4.0	42
29	The cancer stem-cell signaling network and resistance to therapy. Cancer Treatment Reviews, 2016, 49, 25-36.	7.7	122
30	The hypoxic microenvironment: A determinant of cancer stem cell evolution. BioEssays, 2016, 38, S65-74.	2.5	164
31	Impaired mitophagy in Fanconi anemia is dependent on mitochondrial fission. Oncotarget, 2016, 7, 58065-58074.	1.8	21
32	Dysregulated glycolysis as an oncogenic event. Cellular and Molecular Life Sciences, 2015, 72, 1881-1892.	5.4	65
33	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	2.8	239
34	Disruption of the ribosomal P complex leads to stress-induced autophagy. Autophagy, 2015, 11, 1499-1519.	9.1	52
35	Disruptive chemicals, senescence and immortality. Carcinogenesis, 2015, 36, S19-S37.	2.8	32
36	Ribosomal proteins as novel players in tumorigenesis. Cancer and Metastasis Reviews, 2014, 33, 115-41.	5.9	63

#	Article	IF	Citations
37	RPLP1, a Crucial Ribosomal Protein for Embryonic Development of the Nervous System. PLoS ONE, 2014, 9, e99956.	2.5	32
38	Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2. Journal of Cell Biology, 2014, 204, 729-745.	5.2	32
39	Schwannomas, benign tumors with a senescent phenotype. Histology and Histopathology, 2014, 29, 721-30.	0.7	5
40	Stem cell MicroRNAs in senescence and immortalization: novel players in cancer therapy. Medicinal Research Reviews, 2013, 33, 112-138.	10.5	14
41	Oxidative stress and cancer: An overview. Ageing Research Reviews, 2013, 12, 376-390.	10.9	1,106
42	MicroRNAs and cancer stem cells: Therapeutic approaches and future perspectives. Cancer Letters, 2013, 338, 174-183.	7.2	59
43	miR-125b Acts as a Tumor Suppressor in Breast Tumorigenesis via Its Novel Direct Targets ENPEP, CK2-α, CCNJ, and MEGF9. PLoS ONE, 2013, 8, e76247.	2.5	135
44	MAP17 and SGLT1 Protein Expression Levels as Prognostic Markers for Cervical Tumor Patient Survival. PLoS ONE, 2013, 8, e56169.	2.5	45
45	Role of Senescence Induction in Cancer Therapy. , 2013, , 281-289.		O
46	Expression of the ribosomal proteins Rplp0, Rplp1, and Rplp2 in gynecologic tumors. Human Pathology, 2011, 42, 194-203.	2.0	70
47	Cancer, Senescence, and Aging: Translation from Basic Research to Clinics. Journal of Aging Research, 2011, 2011, 1-2.	0.9	1
48	Epigenetic mechanisms in senescence, immortalisation and cancer. Biological Reviews, 2011, 86, 443-455.	10.4	17
49	p16Ink4a overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene, 2011, 30, 2087-2097.	5.9	375
50	Spinophilin acts as a tumor suppressor by regulating Rb phosphorylation. Cell Cycle, 2011, 10, 2751-2762.	2.6	40
51	MicroRNAs Regulate Key Effector Pathways of Senescence. Journal of Aging Research, 2011, 2011, 1-11.	0.9	27
52	A new generation of proto-oncogenes: Cold-inducible RNA binding proteins. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1805, 43-52.	7.4	84
53	Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21Waf1/Cip1. Oncogene, 2010, 29, 2262-2271.	5. 9	145
54	Cold-Inducible RNA-Binding Protein Bypasses Replicative Senescence in Primary Cells through Extracellular Signal-Regulated Kinase 1 and 2 Activation. Molecular and Cellular Biology, 2009, 29, 1855-1868.	2.3	69

#	Article	IF	CITATIONS
55	Regulation of Replicative and Stress-Induced Senescence by RSK4, which is Down-regulated in Human Tumors. Clinical Cancer Research, 2009, 15, 4546-4553.	7.0	38
56	Rplp1 bypasses replicative senescence and contributes to transformation. Experimental Cell Research, 2009, 315, 1372-1383.	2.6	33
57	Senescence induction; a possible cancer therapy. Molecular Cancer, 2009, 8, 3.	19.2	76
58	Cellular senescence bypass screen identifies new putative tumor suppressor genes. Oncogene, 2008, 27, 1961-1970.	5.9	59
59	S-adenosylhomocysteine hydrolase downregulation contributes to tumorigenesis. Carcinogenesis, 2008, 29, 2089-2095.	2.8	65
60	Loss-of-function genetic screening identifies a cluster of ribosomal proteins regulating p53 function. Carcinogenesis, 2008, 29, 1343-1350.	2.8	24
61	MAP17 overexpression is a common characteristic of carcinomas. Carcinogenesis, 2007, 28, 1646-1652.	2.8	48
62	PPP1CA contributes to the senescence program induced by oncogenic Ras. Carcinogenesis, 2007, 29, 491-499.	2.8	61
63	MAP17 enhances the malignant behavior of tumor cells through ROS increase. Carcinogenesis, 2007, 28, 2096-2104.	2.8	55
64	A High Glycolytic Flux Supports the Proliferative Potential of Murine Embryonic Stem Cells. Antioxidants and Redox Signaling, 2007, 9, 293-299.	5 . 4	302
65	Protection from oxidative stress by enhanced glycolysis; a possible mechanism of cellular immortalization. Histology and Histopathology, 2007, 22, 85-90.	0.7	119
66	Adenovirus E1A orchestrates the urokinase-plasminogen activator system and upregulates PAI-2 expression, supporting a tumor suppressor effect. International Journal of Oncology, 2006, 28, 143.	3.3	1
67	New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas. Oncology Reports, 2006, 16, 603-8.	2.6	79
68	A High Glycolytic Flux Supports the Proliferative Potential of Murine Embryonic Stem Cells. Antioxidants and Redox Signaling, 2006, .	5.4	8
69	Quantitative Analysis of Plasma TP53 249Ser-Mutated DNA by Electrospray Ionization Mass Spectrometry. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 2956-2962.	2,5	40
70	Immortalization of Primary Human Prostate Epithelial Cells by c-Myc. Cancer Research, 2005, 65, 2179-2185.	0.9	112
71	Glycolysis and cellular immortalization. Drug Discovery Today Disease Mechanisms, 2005, 2, 263-267.	0.8	21
72	Glycolytic enzymes can modulate cellular life span. Cancer Research, 2005, 65, 177-85.	0.9	458

#	Article	IF	CITATIONS
73	Sensitive and specific detection of K-ras mutations in colon tumors by short oligonucleotide mass analysis. Nucleic Acids Research, 2004, 32, e53-e53.	14.5	31
74	Disruption of Trrap causes early embryonic lethality and defects in cell cycle progression. Nature Genetics, 2001, 29, 206-211.	21.4	122
75	Tumor heterogeneity: morphological, molecular and clinical implications. Histology and Histopathology, 2000, 15, 881-98.	0.7	13
76	In vivo radiosensitizing effect of the adenovirus E1A gene in murine and human malignant tumors International Journal of Oncology, 1999, 15, 1163-8.	3.3	16
77	An association between viral genes and human oncogenic alterations: The adenovirus E1A induces the Ewing tumor fusion transcript EWS–FLI1. Nature Medicine, 1999, 5, 1076-1079.	30.7	35
78	Adenovirus lacking the 19-kDa and 55-kDa E1B genes exerts a marked cytotoxic effect in human malignant cells. Cancer Gene Therapy, 1999, 6, 554-563.	4.6	24
79	Loss of Heterozygosity in the Region Including the BRCA1 Gene on 17q in Colon Cancer. Cancer Genetics and Cytogenetics, 1998, 104, 119-123.	1.0	36
80	Microsatellite instability and p53 mutations in sporadic right and left colon carcinoma. Cancer, 1998, 83, 889-895.	4.1	35
81	Microsatellite instability and p53 mutations in sporadic right and left colon carcinoma. Cancer, 1998, 83, 889-895.	4.1	1
82	In Vivo Tumor Suppressor Effect of Retrovirus-Mediated Gene Transfer of the Adenovirus E1a Gene. Advances in Experimental Medicine and Biology, 1998, 451, 79-86.	1.6	1
83	Antitumor Effect of E1B Defective Adenoviruses in Human Malignant Cells. Advances in Experimental Medicine and Biology, 1998, 451, 87-89.	1.6	1
84	Perspectives in gene therapy. Histology and Histopathology, 1998, 13, 231-42.	0.7	4