Regina M Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5361418/publications.pdf

Version: 2024-02-01

36 papers 1,700 citations

³⁹⁴⁴²¹ 19 h-index 35 g-index

36 all docs 36 docs citations

36 times ranked $\begin{array}{c} 2013 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	A Mathematical Model of the Kinetics of \hat{I}^2 -Amyloid Fibril Growth from the Denatured State. Biophysical Journal, 2001, 81, 1805-1822.	0.5	264
2	Correlation of \hat{l}^2 -Amyloid Aggregate Size and Hydrophobicity with Decreased Bilayer Fluidity of Model Membranes. Biochemistry, 2000, 39, 10309-10318.	2.5	234
3	Recognition Sequence Design for Peptidyl Modulators of β-Amyloid Aggregation and Toxicityâ€. Biochemistry, 1999, 38, 3570-3578.	2.5	218
4	Kinetics of amyloid formation and membrane interaction with amyloidogenic proteins. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1923-1934.	2.6	133
5	Probing the Kinetics of β-Amyloid Self-Association. Journal of Structural Biology, 2000, 130, 109-122.	2.8	99
6	Kinetics of Inhibition of β-Amyloid Aggregation by Transthyretinâ€. Biochemistry, 2006, 45, 15702-15709.	2.5	74
7	Characterization of the Interaction of \hat{l}^2 -Amyloid with Transthyretin Monomers and Tetramers. Biochemistry, 2010, 49, 8276-8289.	2.5	62
8	Model Discrimination and Mechanistic Interpretation of Kinetic Data in Protein Aggregation Studies. Biophysical Journal, 2009, 96, 2871-2887.	0.5	60
9	Identification of beta-amyloid-binding sites on transthyretin. Protein Engineering, Design and Selection, 2012, 25, 337-345.	2.1	56
10	Transthyretin as both a Sensor and a Scavenger of \hat{l}^2 -Amyloid Oligomers. Biochemistry, 2013, 52, 2849-2861.	2.5	48
11	Phage Display Affords Peptides that Modulate \hat{l}^2 -Amyloid Aggregation. Journal of the American Chemical Society, 2006, 128, 11882-11889.	13.7	46
12	Transthyretin-Derived Peptides as Î ² -Amyloid Inhibitors. ACS Chemical Neuroscience, 2014, 5, 542-551.	3.5	39
13	Protein Misfolding and Aggregation. Biotechnology Progress, 2008, 23, 548-552.	2.6	31
14	Quasi-elastic light scattering of antigen-antibody complexes. Molecular Immunology, 1988, 25, 17-32.	2.2	29
15	Evaluation of nanoparticle tracking for characterization of fibrillar protein aggregates. AICHE Journal, 2014, 60, 1236-1244.	3.6	26
16	Asparagine Repeat Peptides: Aggregation Kinetics and Comparison with Glutamine Repeats. Biochemistry, 2015, 54, 4784-4794.	2.5	26
17	Insights into the mechanism of cystatin C oligomer and amyloid formation and its interaction with \hat{l}^2 -amyloid. Journal of Biological Chemistry, 2017, 292, 11485-11498.	3.4	26
18	A Cyclic Peptide Mimic of the β-Amyloid Binding Domain on Transthyretin. ACS Chemical Neuroscience, 2015, 6, 778-789.	3.5	23

#	Article	IF	CITATIONS
19	Transthyretin Mimetics as Antiâ $\hat{\in}\hat{i}^2$ â \in Amyloid Agents: Aâ \in %. Comparison of Peptide and Protein Approaches. ChemMedChem, 2018, 13, 968-979.	3.2	23
20	Transthyretin variants with improved inhibition of \hat{l}^2 -amyloid aggregation. Protein Engineering, Design and Selection, 2016, 29, 209-218.	2.1	22
21	Protein misfolding and aggregation research: Some thoughts on improving quality and utility. Biotechnology Progress, 2013, 29, 1109-1115.	2.6	20
22	Cerebrospinal Fluid Proteins as Regulators of Betaâ€amyloid Aggregation and Toxicity. Israel Journal of Chemistry, 2017, 57, 602-612.	2.3	17
23	Evaluation of Nanoparticle Tracking Analysis for the Detection of Rod-Shaped Particles and Protein Aggregates. Journal of Pharmaceutical Sciences, 2020, 109, 452-463.	3.3	17
24	Differential modification of Cys10 alters transthyretin's effect on beta-amyloid aggregation and toxicity. Protein Engineering, Design and Selection, 2009, 22, 479-488.	2.1	16
25	Membrane Remodeling and Stimulation of Aggregation Following $\hat{l}\pm$ -Synuclein Adsorption to Phosphotidylserine Vesicles. Journal of Physical Chemistry B, 2021, 125, 1582-1594.	2.6	16
26	TANGO-Inspired Design of Anti-Amyloid Cyclic Peptides. ACS Chemical Neuroscience, 2016, 7, 1264-1274.	3.5	14
27	Expression, purification, and characterization of human cystatin C monomers and oligomers. Protein Expression and Purification, 2016, 117, 35-43.	1.3	13
28	A mechanistic model to predict effects of cathepsin B and cystatin C on \hat{l}^2 -amyloid aggregation and degradation. Journal of Biological Chemistry, 2017, 292, 21071-21082.	3.4	12
29	Synthesis and disaggregation of asparagine repeatâ€containing peptides. Journal of Peptide Science, 2014, 20, 860-867.	1.4	11
30	Retinol-Binding Protein Interferes with Transthyretin-Mediated \hat{l}^2 -Amyloid Aggregation Inhibition. Biochemistry, 2018, 57, 5029-5040.	2.5	6
31	ROSETTA-informed design of structurally stabilized cyclic anti-amyloid peptides. Protein Engineering, Design and Selection, 2019, 32, 47-57.	2.1	6
32	Retinol binding protein IV purified from Escherichia coli using intein-mediated cleavage as a suitable replacement for serum sources. Protein Expression and Purification, 2020, 167, 105542.	1.3	5
33	Nanoparticle tracking analysis and statistical mixture distribution analysis to quantify nanoparticle–vesicle binding. Journal of Colloid and Interface Science, 2022, 615, 50-58.	9.4	5
34	Kinetic Analysis of Aggregation Data. Methods in Molecular Biology, 2013, 1017, 201-217.	0.9	2
35	Nanoparticle Tracking for Protein Aggregation Research. Methods in Molecular Biology, 2018, 1777, 145-158.	0.9	1
36	Kinetics of Peptide Aggregation in Neurodegenerative Disease. FASEB Journal, 2009, 23, 327.2.	0.5	O

3