
Tiago M D Domingos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5360194/publications.pdf Version: 2024-02-01

TIACO M D DOMINCOS

#	Article	IF	CITATIONS
1	Dynamic energy budget theory restores coherence in biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3413-3428.	4.0	204
2	Income-based environmental responsibility. Ecological Economics, 2012, 84, 57-65.	5.7	181
3	From empirical patterns to theory: a formal metabolic theory of life. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2453-2464.	4.0	172
4	Testing for the survey mode effect on contingent valuation data quality: A case study of web based versus in-person interviews. Ecological Economics, 2007, 62, 388-398.	5.7	152
5	The AmP project: Comparing species on the basis of dynamic energy budget parameters. PLoS Computational Biology, 2018, 14, e1006100.	3.2	135
6	Physics of metabolic organization. Physics of Life Reviews, 2017, 20, 1-39.	2.8	113
7	Designing an indicator of environmental responsibility. Ecological Economics, 2006, 59, 256-266.	5.7	108
8	Towards a DPSIR driven integration of ecological value, water uses and ecosystem services for estuarine systems. Ocean and Coastal Management, 2013, 72, 64-79.	4.4	92
9	Consumer and producer environmental responsibility: Comparing two approaches. Ecological Economics, 2008, 66, 533-546.	5.7	88
10	Transport Infrastructure Project Evaluation Using Cost-benefit Analysis. Procedia, Social and Behavioral Sciences, 2014, 111, 400-409.	0.5	87
11	Food systems in a zero-deforestation world: Dietary change is more important than intensification for climate targets in 2050. Science of the Total Environment, 2020, 735, 139353.	8.0	65
12	Environmental, economic and social costs and benefits of a packaging waste management system: A Portuguese case study. Resources, Conservation and Recycling, 2014, 85, 67-78.	10.8	59
13	Influenza Infectious Dose May Explain the High Mortality of the Second and Third Wave of 1918–1919 Influenza Pandemic. PLoS ONE, 2010, 5, e11655.	2.5	59
14	Decomposition of useful work intensity: The EU (European Union)-15 countries from 1960 to 2009. Energy, 2014, 76, 704-715.	8.8	56
15	The use of machine learning methods to estimate aboveground biomass of grasslands: A review. Ecological Indicators, 2021, 130, 108081.	6.3	54
16	How sustainable is sustainable marine spatial planning? Part l—Linking the concepts. Marine Policy, 2014, 49, 59-65.	3.2	53
17	International trade and the geographical separation between income and enabled carbon emissions. Ecological Economics, 2013, 89, 162-169.	5.7	52
18	Detailed global modelling of soil organic carbon in cropland, grassland and forest soils. PLoS ONE, 2019, 14, e0222604.	2.5	49

#	Article	IF	CITATIONS
19	Soil organic matter dynamics in Portuguese natural and sown rainfed grasslands. Ecological Modelling, 2011, 222, 993-1001.	2.5	47
20	Life cycle assessment of high-speed rail: a case study in Portugal. International Journal of Life Cycle Assessment, 2017, 22, 410-422.	4.7	47
21	ls neoclassical microeconomics formally valid? An approach based on an analogy with equilibrium thermodynamics. Ecological Economics, 2006, 58, 160-169.	5.7	44
22	The multi-factor energy input–output model. Energy Economics, 2017, 61, 261-269.	12.1	44
23	A conceptual framework for the analysis of engineered biodiverse pastures. Ecological Engineering, 2015, 77, 85-97.	3.6	42
24	The Need for Robust, Consistent Methods in Societal Exergy Accounting. Ecological Economics, 2017, 141, 11-21.	5.7	41
25	Material Services with Both Eyes Wide Open. Sustainability, 2017, 9, 1508.	3.2	35
26	Useful Exergy Is Key in Obtaining Plausible Aggregate Production Functions and Recognizing the Role of Energy in Economic Growth: Portugal 1960–2009. Ecological Economics, 2018, 148, 103-120.	5.7	35
27	Cost–benefit analysis of the Zonal Program of Castro Verde (Portugal): Highlighting the trade-off between biodiversity and soil conservation. Soil and Tillage Research, 2007, 97, 79-90.	5.6	34
28	Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009. Structural Change and Economic Dynamics, 2016, 36, 1-21.	4.5	33
29	Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal. Sustainability, 2018, 10, 3658.	3.2	32
30	Three-level decoupling of energy use in Portugal 1995–2010. Energy Policy, 2017, 108, 134-142.	8.8	28
31	Industrial hemp or eucalyptus paper?. International Journal of Life Cycle Assessment, 2010, 15, 368-375.	4.7	27
32	Analysis of genuine saving and potential green net national income: Portugal, 1990–2005. Ecological Economics, 2010, 69, 1934-1942.	5.7	27
33	Thermodynamics of organisms in the context of dynamic energy budget theory. Physical Review E, 2006, 74, 051901.	2.1	25
34	Regionalization of agri-food life cycle assessment: a review of studies in Portugal and recommendations for the future. International Journal of Life Cycle Assessment, 2016, 21, 875-884.	4.7	25
35	Mapping the Lisbon Potential Foodshed in Ribatejo e Oeste: A Suitability and Yield Model for Assessing the Potential for Localized Food Production. Sustainability, 2017, 9, 2003.	3.2	25
36	The N-P-K soil nutrient balance of Portuguese cropland in the 1950s: The transition from organic to chemical fertilization. Scientific Reports, 2017, 7, 8111.	3.3	24

#	Article	IF	CITATIONS
37	The Effects on Greenhouse Gas Emissions of Ecological Intensification of Meat Production with Rainfed Sown Biodiverse Pastures. Sustainability, 2018, 10, 4184.	3.2	23
38	How sustainable is sustainable marine spatial planning? Part II – The Portuguese experience. Marine Policy, 2014, 49, 48-58.	3.2	22
39	A proposal for using process-based soil models for land use Life cycle impact assessment: Application to Alentejo, Portugal. Journal of Cleaner Production, 2018, 192, 864-876.	9.3	22
40	Exploring the links between total factor productivity and energy efficiency: Portugal, 1960–2014. Energy Economics, 2021, 101, 105407.	12.1	22
41	A general approach to the modelling of trophic chains. Ecological Modelling, 2000, 132, 191-202.	2.5	19
42	From Theory to Econometrics to Energy Policy: Cautionary Tales for Policymaking Using Aggregate Production Functions. Energies, 2017, 10, 203.	3.1	19
43	Moving Toward a Strategy for Addressing Climate Displacement of Marine Resources: A Proof-of-Concept. Frontiers in Marine Science, 2020, 7, .	2.5	19
44	Dynamic Energy Budget Theory: An Efficient and General Theory for Ecology. BioScience, 2015, 65, 341-341.	4.9	18
45	Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009. Energies, 2016, 9, 488.	3.1	18
46	A spatially explicit life cycle assessment midpoint indicator for soil quality in the European Union using soil organic carbon. International Journal of Life Cycle Assessment, 2016, 21, 1076-1091.	4.7	18
47	Valuing the non-market benefits of estuarine ecosystem services in a river basin context: Testing sensitivity to scope and scale. Estuarine, Coastal and Shelf Science, 2016, 169, 95-105.	2.1	17
48	Economic valuation and mapping of Ecosystem Services in the context of protected area management (Natural Park of Serra de São Mamede, Portugal). One Ecosystem, 0, 3, .	0.0	17
49	Consistency of technology-adjusted consumption-based accounting. Nature Climate Change, 2016, 6, 729-730.	18.8	16
50	Modeling Soil Water Dynamics and Pasture Growth in the Montado Ecosystem Using MOHID Land. Water (Switzerland), 2018, 10, 489.	2.7	16
51	Remotely sensed indicators and open-access biodiversity data to assess bird diversity patterns in Mediterranean rural landscapes. Scientific Reports, 2019, 9, 6826.	3.3	16
52	"BalSim― A Carbon, Nitrogen and Greenhouse Gas Mass Balance Model for Pastures. Sustainability, 2019, 11, 53.	3.2	16
53	Object-Based Classification Approaches for Multitemporal Identification and Monitoring of Pastures in Agroforestry Regions using Multispectral Unmanned Aerial Vehicle Products. Remote Sensing, 2020, 12, 814.	4.0	16
54	Constraints on dematerialisation and allocation of natural capital along a sustainable growth path. Ecological Economics, 2005, 54, 382-396.	5.7	15

#	Article	IF	CITATIONS
55	Equilibrium econophysics: A unified formalism for neoclassical economics and equilibrium thermodynamics. Physica A: Statistical Mechanics and Its Applications, 2006, 371, 492-512.	2.6	15
56	The land morphology concept and mapping method and its application to mainland Portugal. Geoderma, 2018, 325, 72-89.	5.1	15
57	A Practical Comparison of Regionalized Land Use and Biodiversity Life Cycle Impact Assessment Models Using Livestock Production as a Case Study. Sustainability, 2018, 10, 4089.	3.2	15
58	A step toward regionalized scaleâ€consistent agricultural life cycle assessment inventories. Integrated Environmental Assessment and Management, 2017, 13, 939-951.	2.9	14
59	Characterizing Livestock Production in Portuguese Sown Rainfed Grasslands: Applying the Inverse Approach to a Process-Based Model. Sustainability, 2018, 10, 4437.	3.2	14
60	Spatiotemporal Patterns of Pasture Quality Based on NDVI Time-Series in Mediterranean Montado Ecosystem. Remote Sensing, 2021, 13, 3820.	4.0	14
61	A new perspective on the growth pattern of the Wandering Albatross (Diomedea exulans) through DEB theory. Journal of Sea Research, 2014, 94, 117-127.	1.6	12
62	Estimating soil organic carbon of sown biodiverse permanent pastures in Portugal using near infrared spectral data and artificial neural networks. Geoderma, 2021, 404, 115387.	5.1	12
63	Assessment of the theory of comprehensive national accounting with data for Portugal. Ecological Economics, 2013, 95, 188-196.	5.7	11
64	It's a keeper: Valuing the carbon storage service of Agroforestry ecosystems in the context of CAP Eco-Schemes. Land Use Policy, 2021, 109, 105712.	5.6	11
65	Periodic and Quasi-periodic Behavior in Resource-dependent Age Structured Population Models. Bulletin of Mathematical Biology, 2001, 63, 207-230.	1.9	10
66	Multiple dose vaccination against childhood diseases: high coverage with the first dose remains crucial for eradication. Mathematical Medicine and Biology, 2000, 17, 201-212.	1.2	9
67	Comment on "Energy Uptake and Allocation During Ontogeny― Science, 2009, 325, 1206-1206.	12.6	8
68	The smarter, the cleaner? Collaborative footprint: A further look at taxi sharing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5488.	7.1	8
69	Do the Different Exergy Accounting Methodologies Provide Consistent or Contradictory Results? A Case Study with the Portuguese Agricultural, Forestry and Fisheries Sector. Energies, 2017, 10, 1219.	3.1	8
70	Highly productive sown biodiverse pastures with low invasion risk. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1695.	7.1	7
71	Consolidating Regionalized Global Characterization Factors for Soil Organic Carbon Depletion Due to Land Occupation and Transformation. Environmental Science & Technology, 2018, 52, 12436-12444.	10.0	7
72	Harvesting in a resource dependent age structured Leslie type population model. Mathematical Biosciences, 2004, 189, 141-151.	1.9	6

#	Article	IF	CITATIONS
73	A discussion of the paper, Elshkaki et al., "Dynamic stock modeling: a method for the identification and estimation of future waste streams and emissions based on past production and product stock characteristicsâ€; Energy 2005;30:1353–63. Energy, 2008, 33, 834-834.	8.8	6
74	Can we reach consensus between marine ecological models and DEB theory? A look at primary producers. Journal of Sea Research, 2014, 94, 92-104.	1.6	6
75	The universality and the future prospects of physiological energetics. Physics of Life Reviews, 2017, 20, 78-84.	2.8	6
76	Transportation Infrastructure Project Evaluation: Transforming CBA to Include a Life Cycle Perspective. World Sustainability Series, 2018, , 745-771.	0.4	5
77	Evaluation of Near Infrared Spectroscopy (NIRS) for Estimating Soil Organic Matter and Phosphorus in Mediterranean Montado Ecosystem. Sustainability, 2021, 13, 2734.	3.2	4
78	Consumer and producer responsibility: Comments. Ecological Economics, 2008, 66, 551.	5.7	3
79	Minimizing direct greenhouse gas emissions in livestock production: The need for a metabolic theory. Ecological Modelling, 2020, 434, 109259.	2.5	3
80	Mapping and Assessment of Ecosystems Services under the Proposed MAES European Common Framework: Methodological Challenges and Opportunities. Land, 2021, 10, 1040.	2.9	3
81	Using Satellite NDVI Time-Series to Monitor Grazing Effects on Vegetation Productivity and Phenology in Heterogeneous Mediterranean Forests. Remote Sensing, 2022, 14, 2322.	4.0	3
82	New and old regimes for the endoreversible heat engine. Journal of Non-Equilibrium Thermodynamics, 2005, 30, .	4.2	2
83	The Way Forward in Quantifying Extended Exergy Efficiency. Energies, 2018, 11, 2522.	3.1	2
84	Agricultural Expansion, Soil Degradation, and Fertilization in Portugal, 1873–1960: From History to Soil and Back Again. Social Science History, 0, , 1-28.	0.5	2
85	Global process-based characterization factors of soil carbon depletion for life cycle impact assessment. Scientific Data, 2021, 8, 237.	5.3	2
86	A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value. Energies, 2022, 15, 3549.	3.1	2
87	Constraints on dematerialisation and allocation of natural capital along a sustainable growth path: Reply to Jorge Ares. Ecological Economics, 2006, 59, 245-246.	5.7	1
88	Current Practice and Future Perspectives for Livestock Production and Industrial Ecology. Sustainability, 2019, 11, 4210.	3.2	1
89	Insights from Past Trends in Exergy Efficiency and Carbon Intensity of Electricity: Portugal, 1900–2014. Energies, 2019, 12, 534.	3.1	1
90	Life Engine - Creating Artificial Life for Scientific and Entertainment Purposes. Lecture Notes in Computer Science, 2011, , 278-285.	1.3	0