Oliver Daumke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5358340/publications.pdf

Version: 2024-02-01

172457 144013 4,217 61 29 57 citations h-index g-index papers 67 67 67 5885 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Membrane fission by dynamin: what we know and what we need to know. EMBO Journal, 2016, 35, 2270-2284.	7.8	388
2	Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature, 2007, 449, 923-927.	27.8	282
3	Crystal structure of nucleotide-free dynamin. Nature, 2011, 477, 556-560.	27.8	277
4	Structure and Analysis of FCHo2 F-BAR Domain: A Dimerizing and Membrane Recruitment Module that Effects Membrane Curvature. Structure, 2007, 15, 839-852.	3.3	261
5	Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. EMBO Journal, 2013, 32, 1280-1292.	7. 8	243
6	Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature, 2010, 465, 502-506.	27.8	229
7	FIP200 Claw Domain Binding to p62 Promotes Autophagosome Formation at Ubiquitin Condensates. Molecular Cell, 2019, 74, 330-346.e11.	9.7	223
8	BAR Domain Scaffolds in Dynamin-Mediated Membrane Fission. Cell, 2014, 156, 882-892.	28.9	199
9	Structure of Myxovirus Resistance Protein A Reveals Intra- and Intermolecular Domain Interactions Required for the Antiviral Function. Immunity, 2011, 35, 514-525.	14.3	188
10	EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Molecular Biology of the Cell, 2012, 23, 1316-1329.	2.1	165
11	Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurology, The, 2020, 19, 908-918.	10.2	139
12	Crystal structure of the dynamin tetramer. Nature, 2015, 525, 404-408.	27.8	115
13	Structural Basis for Aryl Hydrocarbon Receptor-Mediated Gene Activation. Structure, 2017, 25, 1025-1033.e3.	3.3	95
14	Dynamin-like MxA GTPase: Structural Insights into Oligomerization and Implications for Antiviral Activity. Journal of Biological Chemistry, 2010, 285, 28419-28424.	3.4	89
15	Structure and assembly of the mitochondrial membrane remodelling GTPase Mgm1. Nature, 2019, 571, 429-433.	27.8	86
16	Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily. Biopolymers, 2016, 105, 580-593.	2.4	85
17	Regulated membrane remodeling by Mic60 controls formation of mitochondrial crista junctions. Nature Communications, 2017, 8, 15258.	12.8	84
18	A stomatin dimer modulates the activity of acid-sensing ion channels. EMBO Journal, 2012, 31, 3635-3646.	7.8	72

#	Article	IF	Citations
19	Functional Mapping of Human Dynamin-1-Like GTPase Domain Based on X-ray Structure Analyses. PLoS ONE, 2013, 8, e71835.	2.5	63
20	Structural Insights into Dynamin-Mediated Membrane Fission. Structure, 2012, 20, 1621-1628.	3.3	60
21	Structural basis of oligomerization in septin-like GTPase of immunity-associated protein 2 (GIMAP2). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20299-20304.	7.1	49
22	Oligomerization of Dynamin Superfamily Proteins in Health and Disease. Progress in Molecular Biology and Translational Science, 2013, 117, 411-443.	1.7	49
23	Role of Nucleotide Binding and GTPase Domain Dimerization in Dynamin-like Myxovirus Resistance Protein A for GTPase Activation and Antiviral Activity. Journal of Biological Chemistry, 2015, 290, 12779-12792.	3.4	48
24	Structural Insights into Membrane Interaction and Caveolar Targeting of Dynamin-like EHD2. Structure, 2014, 22, 409-420.	3.3	41
25	EHD2-mediated restriction of caveolar dynamics regulates cellular fatty acid uptake. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7471-7481.	7.1	41
26	Structural Insights into the Mechanism of GTPase Activation in the GIMAP Family. Structure, 2013, 21, 550-559.	3.3	39
27	Protein kinase C (PKC)-mediated phosphorylation of PACSIN2 triggers the removal of caveolae from the plasma membrane. Journal of Cell Science, 2015, 128, 2766-80.	2.0	39
28	Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers. Nature Communications, 2016, 7, 13047.	12.8	35
29	Structural insights into the activation mechanism of dynamin-like EHD ATPases. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5629-5634.	7.1	34
30	Mitochondrial Homeostasis: How Do Dimers of Mitofusins Mediate Mitochondrial Fusion?. Current Biology, 2017, 27, R353-R356.	3.9	33
31	Characterization of the CD177 interaction with the ANCA antigen proteinase 3. Scientific Reports, 2017, 7, 43328.	3.3	31
32	Structural insights into RNA encapsidation and helical assembly of the Toscana virus nucleoprotein. Nucleic Acids Research, 2014, 42, 6025-6037.	14.5	30
33	Structure of the Hantavirus Nucleoprotein Provides Insights into the Mechanism of RNA Encapsidation. Cell Reports, 2016, 14, 2092-2099.	6.4	28
34	hGBP1 Coordinates Chlamydia Restriction and Inflammasome Activation through Sequential GTP Hydrolysis. Cell Reports, 2020, 31, 107667.	6.4	27
35	Lysine acetylation regulates the interaction between proteins and membranes. Nature Communications, 2021, 12, 6466.	12.8	27
36	53BP1 Supports Immunoglobulin Class Switch Recombination Independently of Its DNA Double-Strand Break End Protection Function. Cell Reports, 2019, 28, 1389-1399.e6.	6.4	23

#	Article	IF	CITATIONS
37	Divergent architecture of the heterotrimeric NatC complex explains N-terminal acetylation of cognate substrates. Nature Communications, 2020, 11, 5506.	12.8	23
38	Structure of the MxA stalk elucidates the assembly of ring-like units of an antiviral module. Small GTPases, 2010, 1, 62-64.	1.6	20
39	New role for the (pro)renin receptor in T-cell development. Blood, 2015, 126, 504-507.	1.4	20
40	Quantitative GTPase Affinity Purification Identifies Rho Family Protein Interaction Partners. Molecular and Cellular Proteomics, 2017, 16, 73-85.	3.8	20
41	Autocrine LTA signaling drives NF-κB and JAK-STAT activity and myeloid gene expression in Hodgkin lymphoma. Blood, 2019, 133, 1489-1494.	1.4	20
42	Dynamics of the Ligand Binding Domain Layer during AMPA Receptor Activation. Biophysical Journal, 2016, 110, 896-911.	0.5	19
43	The immunity-related GTPase Irga6 dimerizes in a parallel head-to-head fashion. BMC Biology, 2016, 14, 14.	3.8	19
44	Effects of allelic variations in the human myxovirus resistance protein A on its antiviral activity. Journal of Biological Chemistry, 2018, 293, 3056-3072.	3.4	18
45	Age attenuates the Tâ€type Ca _V 3.2â€RyR axis in vascular smooth muscle. Aging Cell, 2020, 19, e13134.	6.7	18
46	Structural insights into membrane fusion at the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2175-2176.	7.1	17
47	eNOS-NO-induced small blood vessel relaxation requires EHD2-dependent caveolae stabilization. PLoS ONE, 2019, 14, e0223620.	2.5	14
48	Structural basis of phosphatidylinositol 3-kinase C2α function. Nature Structural and Molecular Biology, 2022, 29, 218-228.	8.2	14
49	Polymer-like Model to Study the Dynamics of Dynamin Filaments on Deformable Membrane Tubes. Biophysical Journal, 2019, 117, 1870-1891.	0.5	13
50	Pathophysiological Role of Caveolae in Hypertension. Frontiers in Medicine, 2019, 6, 153.	2.6	12
51	The ARFRP1-dependent Golgi scaffolding protein GOPC is required for insulin secretion from pancreatic \hat{l}^2 -cells. Molecular Metabolism, 2021, 45, 101151.	6.5	10
52	GTP-dependent scaffold formation in the GTPase of Immunity-Associated Protein family. Small GTPases, 2011, 2, 27-30.	1.6	9
53	SPFH protein cage—Âone ring to rule them all. Cell Research, 2022, 32, 117-118.	12.0	8
54	Purification, crystallization and preliminary X-ray analysis of human GIMAP2. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 725-729.	0.7	5

#	Article	IF	CITATIONS
55	Quantification and demonstration of the collective constriction-by-ratchet mechanism in the dynamin molecular motor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2101144118.	7.1	5
56	GIMAP6 regulates autophagy, immune competence, and inflammation in mice and humans. Journal of Experimental Medicine, 2022, 219, .	8.5	4
57	Protein-mediated membrane remodeling. Journal of Structural Biology, 2016, 196, 1-2.	2.8	1
58	eNOS-NO-induced small blood vessel relaxation requires EHD2-dependent caveolae stabilization. , 2019, 14, e0223620.		0
59	eNOS-NO-induced small blood vessel relaxation requires EHD2-dependent caveolae stabilization., 2019, 14, e0223620.		O
60	eNOS-NO-induced small blood vessel relaxation requires EHD2-dependent caveolae stabilization., 2019, 14, e0223620.		0
61	eNOS-NO-induced small blood vessel relaxation requires EHD2-dependent caveolae stabilization., 2019, 14, e0223620.		0