Eider Goikolea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5355670/publications.pdf

Version: 2024-02-01

42 papers

4,107 citations

361045 20 h-index 39 g-index

43 all docs 43 docs citations

43 times ranked 6505 citing authors

#	Article	IF	CITATIONS
1	Naâ€lon Batteries—Approaching Old and New Challenges. Advanced Energy Materials, 2020, 10, 2002055.	10.2	229
2	Fabrication of high-performance dual carbon Li-ion hybrid capacitor: mass balancing approach to improve the energy-power density and cycle life. Scientific Reports, 2020, 10, 10842.	1.6	20
3	Graphene as Vehicle for Ultrafast Lithium Ion Capacitor Development Based on Recycled Olive Pit Derived Carbons. Journal of the Electrochemical Society, 2019, 166, A2840-A2848.	1.3	11
4	On the use of 3-cyanopropionic acid methyl ester as alternative solvent for high voltage dual carbon lithium ion capacitors. Journal of Power Sources, 2019, 434, 226757.	4.0	13
5	Robust NiCo ₂ O ₄ /Superactivated Carbon Aqueous Supercapacitor with High Power Density and Stable Cyclability. ChemElectroChem, 2019, 6, 2536-2545.	1.7	11
6	Novel Lithium″on Capacitor Based on TiSb ₂ as Negative Electrode: The Role of Mass Ratio towards High Energyâ€ŧoâ€Power Densities and Long Cyclability. Batteries and Supercaps, 2019, 2, 153-159.	2.4	12
7	Relation between texture and high-rate capacitance of oppositely charged microporous carbons from biomass waste in acetonitrile-based supercapacitors. Electrochimica Acta, 2019, 293, 496-503.	2.6	13
8	Materials for supercapacitors: When Li-ion battery power is not enough. Materials Today, 2018, 21, 419-436.	8.3	335
9	Highly packed graphene–CNT films as electrodes for aqueous supercapacitors with high volumetric performance. Journal of Materials Chemistry A, 2018, 6, 3667-3673.	5.2	43
10	Protic and Aprotic Ionic Liquids in Combination with Hard Carbon for Lithium-Ion and Sodium-Ion Batteries. Batteries and Supercaps, 2018, 1, 203-203.	2.4	0
11	Protic and Aprotic Ionic Liquids in Combination with Hard Carbon for Lithiumâ€lon and Sodiumâ€lon Batteries. Batteries and Supercaps, 2018, 1, 204-208.	2.4	19
12	High Performance Titanium Antimonide TiSb ₂ Alloy for Na-Ion Batteries and Capacitors. Chemistry of Materials, 2018, 30, 8155-8163.	3.2	36
13	Reduced graphene oxide decorated with SnO2 nanoparticles as negative electrode for lithium ion capacitors. Electrochimica Acta, 2018, 284, 542-550.	2.6	73
14	Macroporous carbon monoliths derived from phloroglucinol–sucrose resins as binder-free thick electrodes for supercapacitors. Journal of Materials Science, 2017, 52, 11191-11200.	1.7	12
15	One-pot synthesis of highly activated carbons from melamine and terephthalaldehyde as electrodes for high energy aqueous supercapacitors. Journal of Materials Chemistry A, 2017, 5, 14619-14629.	5 . 2	58
16	Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits. Journal of Power Sources, 2017, 359, 17-26.	4.0	133
17	Outstanding room-temperature capacitance of biomass-derived microporous carbons in ionic liquid electrolyte. Electrochemistry Communications, 2017, 79, 5-8.	2.3	20
18	Graphene-based lithium ion capacitor with high gravimetric energy and power densities. Journal of Power Sources, 2017, 363, 422-427.	4.0	49

#	Article	IF	CITATIONS
19	Scandium/Alkaline Metal–Organic Frameworks: Adsorptive Properties and Ionic Conductivity. Chemistry of Materials, 2016, 28, 2519-2528.	3.2	68
20	The decisive role of electrolyte concentration in the performance of aqueous chloride-based carbon/carbon supercapacitors with extended voltage window. Electrochimica Acta, 2016, 221, 177-183.	2.6	24
21	Structural and electrochemical analysis of Zn doped Na3Ni2SbO6 cathode for Na-ion battery. Journal of Power Sources, 2016, 336, 186-195.	4.0	33
22	Thin films of pure vanadium nitride: Evidence for anomalous non-faradaic capacitance. Journal of Power Sources, 2016, 324, 439-446.	4.0	67
23	Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016, 58, 1189-1206.	8.2	2,197
24	Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochimica Acta, 2015, 160, 178-184.	2.6	144
25	Effect of the electrolytic solvent and temperature on aluminium current collector stability: A case of sodium-ion battery cathode. Journal of Power Sources, 2015, 297, 168-173.	4.0	33
26	Large-Scale Hydrothermal Synthesis of Hierarchical Mesoporous Carbon for High-Performance Supercapacitors. Energy and Environment Focus, 2015, 4, 201-208.	0.3	9
27	Electrochemical performance of NaFe (Ni0.5Ti0.5)1â^'O2 (xÂ=Â0.2 and xÂ=Â0.4) cathode for sodium-ion battery. Journal of Power Sources, 2015, 273, 333-339.	4.0	35
28	Effect of Mesopore Ordering in Otherwise Similar Micro/Mesoporous Carbons on the High-Rate Performance of Electric Double-Layer Capacitors. Journal of Physical Chemistry C, 2014, 118, 27715-27720.	1.5	28
29	Nanoporous carbons from natural lignin: study of structural–textural properties and application to organic-based supercapacitors. RSC Advances, 2014, 4, 48336-48343.	1.7	50
30	Synthesis of nanosized MnO2 prepared by the polyol method and its application in high power supercapacitors. Materials for Renewable and Sustainable Energy, 2013, 2, 1.	1.5	10
31	A two-step process for preparation of dodecanethiol-capped Au nanoparticles with room-temperature spontaneous magnetization. New Journal of Chemistry, 2013, 37, 2628.	1.4	3
32	Ferromagnetism of polythiophene-capped Au nanoparticles. Journal of Applied Physics, 2011, 109, .	1.1	6
33	Preparation and Characterization of Monodisperse Fe ₃ O ₄ Nanoparticles: An Electron Magnetic Resonance Study. Chemistry of Materials, 2011, 23, 2879-2885.	3.2	38
34	Effect of Organic Capping on the Magnetic Properties of Au Nanoparticles. Materials Science Forum, 2010, 654-656, 1174-1177.	0.3	0
35	Magnetic and structural characterization of thiol capped ferromagnetic Ag nanoparticles. Journal of Applied Physics, 2010, 107, .	1.1	13
36	Thiol-capped ferromagnetic Au nanoparticles investigated by Au L3 x-ray absorption spectroscopy. Journal of Applied Physics, 2009, 105, 07A907.	1.1	13

#	Article	lF	CITATIONS
37	Chemically Induced Permanent Magnetism in Au, Ag, and Cu Nanoparticles:  Localization of the Magnetism by Element Selective Techniques. Nano Letters, 2008, 8, 661-667.	4.5	220
38	Magnetic and structural characterization of silver-iron oxide nanoparticles obtained by the microemulsion technique. Journal of Non-Crystalline Solids, 2008, 354, 5216-5218.	1.5	13
39	Evidence of intrinsic ferromagnetic behavior of thiol capped Au nanoparticles based on μSR results. Journal of Non-Crystalline Solids, 2008, 354, 5210-5212.	1.5	9
40	Low-temperature electron paramagnetic resonance in silver-iron oxide nanoparticles. Journal of Non-Crystalline Solids, 2007, 353, 832-834.	1.5	5
41	Mössbauer study of the crystallization products of a Fe75Zr25 amorphous alloy. Hyperfine Interactions, 2007, 165, 161-165.	0.2	2
42	Superkondentsadoreak: Energia Biltzeko Gailuak. Ekaia (journal), 0, , .	0.0	O