## Scott T Bates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5355614/publications.pdf Version: 2024-02-01



SCOTT T RATES

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The role of parental care in the establishment of the offspring digestive tract microbiome in Nicrophorus defodiens. Animal Behaviour, 2021, 172, 35-44.                     | 1.9  | 1         |
| 2  | Defining gut mycobiota for wild animals: a need for caution in assigning authentic resident fungal taxa. Animal Microbiome, 2021, 3, 75.                                     | 3.8  | 15        |
| 3  | Fungal functional ecology: bringing a traitâ€based approach to plantâ€associated fungi. Biological<br>Reviews, 2020, 95, 409-433.                                            | 10.4 | 171       |
| 4  | FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity,<br>2020, 105, 1-16.                                                  | 12.3 | 387       |
| 5  | Examining transmission of gut bacteria to preserved carcass via anal secretions in Nicrophorus defodiens. PLoS ONE, 2019, 14, e0225711.                                      | 2.5  | 11        |
| 6  | rMyCoPortal - an R package to interface with the Mycology Collections Portal. Biodiversity Data<br>Journal, 2019, 7, e31511.                                                 | 0.8  | 3         |
| 7  | The protochecklist of North American nonlichenized Fungi. Mycologia, 2018, 110, 1222-1348.                                                                                   | 1.9  | 10        |
| 8  | MATING TYPE CHARACTERIZATION OF FUSARIUM CULMORUM STRAINS CAUSING WHEAT CROWN ROT IN IRAQ. Pakistan Journal of Phytopathology, 2018, 30, 109.                                | 0.4  | 1         |
| 9  | The Mycology Collections Portal (MyCoPortal). IMA Fungus, 2017, 8, A65-A66.                                                                                                  | 3.8  | 21        |
| 10 | Characterization of the juvenile green turtle (Chelonia mydas) microbiome throughout an ontogenetic shift from pelagic to neritic habitats. PLoS ONE, 2017, 12, e0177642.    | 2.5  | 59        |
| 11 | Loss of functional diversity and network modularity in introduced plant-fungal symbioses. AoB<br>PLANTS, 2016, , plw084.                                                     | 2.3  | 12        |
| 12 | Phylogenetic placement of the secotioid fungus <i>Araneosa columellata</i> within <i>Agaricus</i> .<br>Mycotaxon, 2016, 131, 103-110.                                        | 0.3  | 3         |
| 13 | FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 2016, 20, 241-248.                                              | 1.6  | 2,797     |
| 14 | Original Article. Geographic distribution of Fusarium culmorum chemotypes associated with wheat<br>crown rot in Iraq. Journal of Plant Protection Research, 2016, 57, 43-49. | 1.0  | 7         |
| 15 | Effort versus Reward: Preparing Samples for Fungal Community Characterization in High-Throughput<br>Sequencing Surveys of Soils. PLoS ONE, 2015, 10, e0127234.               | 2.5  | 36        |
| 16 | <i>Aurantioporthe corni</i> gen. et comb. nov., an endophyte and pathogen of <i>Cornus<br/>alternifolia</i> . Mycologia, 2015, 107, 66-79.                                   | 1.9  | 17        |
| 17 | Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide.<br>Ecology Letters, 2015, 18, 85-95.                                     | 6.4  | 612       |
| 18 | Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across<br>North American arid lands. Ecological Processes, 2013, 2, .           | 3.9  | 69        |

SCOTT T BATES

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Towards a unified paradigm for sequenceâ€based identification of fungi. Molecular Ecology, 2013, 22,<br>5271-5277.                                                                                                                          | 3.9 | 2,997     |
| 20 | Diversity, distribution and sources of bacteria in residential kitchens. Environmental Microbiology, 2013, 15, 588-596.                                                                                                                     | 3.8 | 170       |
| 21 | Global biogeography of highly diverse protistan communities in soil. ISME Journal, 2013, 7, 652-659.                                                                                                                                        | 9.8 | 412       |
| 22 | Meeting Report: Fungal ITS Workshop (October 2012). Standards in Genomic Sciences, 2013, 8, 118-123.                                                                                                                                        | 1.5 | 34        |
| 23 | Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and<br>Composting Times. PLoS ONE, 2013, 8, e79512.                                                                                                | 2.5 | 258       |
| 24 | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21390-21395.                                 | 7.1 | 1,260     |
| 25 | Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME<br>Journal, 2012, 6, 343-351.                                                                                                                  | 9.8 | 2,051     |
| 26 | Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States. Mycologia, 2012, 104, 353-361.                                                                                                  | 1.9 | 90        |
| 27 | A preliminary survey of lichen associated eukaryotes using pyrosequencing. Lichenologist, 2012, 44, 137-146.                                                                                                                                | 0.8 | 67        |
| 28 | Bacterial Communities Associated with the Lichen Symbiosis. Applied and Environmental Microbiology, 2011, 77, 1309-1314.                                                                                                                    | 3.1 | 302       |
| 29 | Examining the global distribution of dominant archaeal populations in soil. ISME Journal, 2011, 5, 908-917.                                                                                                                                 | 9.8 | 1,112     |
| 30 | The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology and Biochemistry, 2011, 43, 1450-1455.                                                                                                        | 8.8 | 613       |
| 31 | Microbial Biogeography of Public Restroom Surfaces. PLoS ONE, 2011, 6, e28132.                                                                                                                                                              | 2.5 | 222       |
| 32 | Fungal communities of lichen-dominated biological soil crusts: Diversity, relative microbial biomass,<br>and their relationship to disturbance and crust cover. Journal of Arid Environments, 2010, 74,<br>1192-1199.                       | 2.4 | 99        |
| 33 | Archaeal populations in biological soil crusts from arid lands in North America. Soil Biology and Biochemistry, 2009, 41, 2069-2074.                                                                                                        | 8.8 | 81        |
| 34 | A cultureâ€independent study of freeâ€iving fungi in biological soil crusts of the Colorado Plateau:<br>their diversity and relative contribution to microbial biomass. Environmental Microbiology, 2009, 11,<br>56-67.                     | 3.8 | 113       |
| 35 | Exophiala crusticola anam. nov. (affinity Herpotrichiellaceae), a novel black yeast from biological soil<br>crusts in the Western United States. International Journal of Systematic and Evolutionary<br>Microbiology, 2006, 56, 2697-2702. | 1.7 | 36        |
| 36 | Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass<br>Phallomycetidae and two new orders. Mycologia, 2006, 98, 949-959.                                                                       | 1.9 | 143       |

| #  | Article                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Lichens of Parashant National Monument, Arizona: A Preliminary Study. Journal of the<br>Arizona-Nevada Academy of Science, 2004, 37, 85-90. | 0.1 | 1         |