Henry M Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5354749/publications.pdf Version: 2024-02-01

HENDY M KDALLSE

#	Article	IF	CITATIONS
1	Phenolic Lipids Derived from Cashew Nut Shell Liquid to Treat Metabolic Diseases. Journal of Medicinal Chemistry, 2022, 65, 1961-1978.	6.4	6
2	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 2022, 375, eabk2432.	12.6	295
3	The omega-3 hydroxy fatty acid 7(<i>S</i>)-HDHA is a high-affinity PPARα ligand that regulates brain neuronal morphology. Science Signaling, 2022, 15, .	3.6	17
4	A Roadmap to the Structure-Related Metabolism Pathways of Per- and Polyfluoroalkyl Substances in the Early Life Stages of Zebrafish (<i>Danio rerio</i>). Environmental Health Perspectives, 2021, 129, 77004.	6.0	22
5	Single-cell RNA-sequencing reveals pre-meiotic X-chromosome dosage compensation in Drosophila testis. PLoS Genetics, 2021, 17, e1009728.	3.5	29
6	An optimized QF-binary expression system for use in zebrafish. Developmental Biology, 2020, 465, 144-156.	2.0	10
7	A Functional Analysis of the <i>Drosophila</i> Gene <i>hindsight</i> : Evidence for Positive Regulation of EGFR Signaling. G3: Genes, Genomes, Genetics, 2020, 10, 117-127.	1.8	3
8	Toxicokinetics of Brominated Azo Dyes in the Early Life Stages of Zebrafish (<i>Danio rerio</i>) Is Prone to Aromatic Substituent Changes. Environmental Science & Technology, 2020, 54, 4421-4431.	10.0	12
9	Long Noncoding RNAs and Repetitive Elements: Junk or Intimate Evolutionary Partners?. Trends in Genetics, 2019, 35, 892-902.	6.7	107
10	15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR-γ) to promote Cryptococcus neoformans growth during infection. PLoS Pathogens, 2019, 15, e1007597.	4.7	30
11	Idebenone and coenzyme Q10 are novel PPARÎ \pm /Î ³ ligands, with potential for treatment of fatty liver diseases. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	26
12	New and Prospective Roles for IncRNAs in Organelle Formation and Function. Trends in Genetics, 2018, 34, 736-745.	6.7	30
13	The New RNA World: Growing Evidence for Long Noncoding RNA Functionality. Trends in Genetics, 2017, 33, 665-676.	6.7	192
14	High Resolution Fluorescent In Situ Hybridization in Drosophila Embryos and Tissues Using Tyramide Signal Amplification. Journal of Visualized Experiments, 2017, , .	0.3	10
15	In Situ Hybridization: Fruit Fly Embryos and Tissues. Current Protocols in Essential Laboratory Techniques, 2017, 15, 9.3.1.	2.6	2
16	Control of tissue size and development by a regulatory element in the 3'UTR. American Journal of Cancer Research, 2017, 7, 673-687.	1.4	4
17	Diverse and pervasive subcellular distributions for both coding and long noncoding RNAs. Genes and Development, 2016, 30, 594-609.	5.9	116
18	Germ Cell Segregation from the Drosophila Soma Is Controlled by an Inhibitory Threshold Set by the Arf-GEF Steppke. Genetics, 2015, 200, 863-872.	2.9	11

HENRY M KRAUSE

#	Article	IF	CITATIONS
19	Distinct Regulation of Transmitter Release at the Drosophila NMJ by Different Isoforms of nemy. PLoS ONE, 2015, 10, e0132548.	2.5	9
20	Developmentally Regulated Elimination of Damaged Nuclei Involves a Chk2-Dependent Mechanism of mRNA Nuclear Retention. Developmental Cell, 2014, 29, 468-481.	7.0	37
21	Spatial Profiling of Nuclear Receptor Transcription Patterns over the Course of <i>Drosophila</i> Development. G3: Genes, Genomes, Genetics, 2013, 3, 1177-1189.	1.8	13
22	Nuclear Receptors: Small Molecule Sensors that Coordinate Growth, Metabolism and Reproduction. Sub-Cellular Biochemistry, 2011, 52, 123-153.	2.4	29
23	The Zebrafish: A Powerful Platform for <i>In Vivo</i> , HTS Drug Discovery. Assay and Drug Development Technologies, 2011, 9, 354-361.	1.2	91
24	Syndecan contributes to heart cell specification and lumen formation during Drosophila cardiogenesis. Developmental Biology, 2011, 356, 279-290.	2.0	29
25	Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75. Genes and Development, 2011, 25, 1476-1485.	5.9	118
26	Crystal Structure of Fushi Tarazu Factor 1 Ligand Binding Domain/Fushi Tarazu Peptide Complex Identifies New Class of Nuclear Receptors. Journal of Biological Chemistry, 2011, 286, 31225-31231.	3.4	16
27	Identification of dAven, aDrosophila melanogasterortholog of the cell cycle regulator Aven. Cell Cycle, 2011, 10, 989-998.	2.6	12
28	In Situ Hybridization: Fruit Fly Embryos and Tissues. Current Protocols in Essential Laboratory Techniques, 2010, 4, 9.3.1.	2.6	18
29	A Live Zebrafish-Based Screening System for Human Nuclear Receptor Ligand and Cofactor Discovery. PLoS ONE, 2010, 5, e9797.	2.5	41
30	The <i>Drosophila</i> DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis. Genes and Development, 2009, 23, 2711-2716.	5.9	94
31	The Structural Basis of Gas-Responsive Transcription by the Human Nuclear Hormone Receptor REV-ERBβ. PLoS Biology, 2009, 7, e1000043.	5.6	115
32	Global implications of mRNA localization pathways in cellular organization. Current Opinion in Cell Biology, 2009, 21, 409-415.	5.4	46
33	Nuclear Receptors <i>Homo sapiens</i> Rev-erbl² and <i>Drosophila melanogaster</i> E75 Are Thiolate-Ligated Heme Proteins Which Undergo Redox-Mediated Ligand Switching and Bind CO and NO. Biochemistry, 2009, 48, 7056-7071.	2.5	79
34	Global analysis of mRNA localization reveals a prominent role in the organization of cellular architecture and function. FASEB Journal, 2009, 23, 194.2.	0.5	0
35	High-Resolution Fluorescent In Situ Hybridization of Drosophila Embryos and Tissues. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5019-pdb.prot5019.	0.3	20
36	Fluorescent In Situ Hybridization Protocols in Drosophila Embryos and Tissues. Methods in Molecular Biology, 2008, 420, 289-302.	0.9	100

HENRY M KRAUSE

#	Article	IF	CITATIONS
37	A stem-loop structure in the wingless transcript defines a consensus motif for apical RNA transport. Development (Cambridge), 2008, 135, 133-143.	2.5	27
38	A Multiprotein Complex That Mediates Translational Enhancement in Drosophila. Journal of Biological Chemistry, 2007, 282, 34031-34038.	3.4	24
39	Global Analysis of mRNA Localization Reveals a Prominent Role in Organizing Cellular Architecture and Function. Cell, 2007, 131, 174-187.	28.9	878
40	A modified tandem affinity purification strategy identifies cofactors of theDrosophila nuclear receptorâ€dHNF4. Proteomics, 2006, 6, 927-935.	2.2	39
41	Dynamic regulation of Drosophila nuclear receptor activity in vivo. Development (Cambridge), 2006, 133, 3549-3562.	2.5	91
42	tantalus, a potential link between Notch signalling and chromatin-remodelling complexes. Development Genes and Evolution, 2005, 215, 255-260.	0.9	1
43	The Drosophila Nuclear Receptor E75 Contains Heme and Is Gas Responsive. Cell, 2005, 122, 195-207.	28.9	235
44	Nuclear Hormone Receptors, Metabolism, and Aging: What Goes Around Comes Around. Science of Aging Knowledge Environment: SAGE KE, 2004, 2004, re8-re8.	0.8	21
45	The Drosophila Orphan Nuclear Receptor DHR38 Mediates an Atypical Ecdysteroid Signaling Pathway. Cell, 2003, 113, 731-742.	28.9	226
46	Anterior-posterior patterning in the Drosophila embryo. Advances in Developmental Biology and Biochemistry, 2002, 12, 155-204.	0.3	43
47	Tantalus, a Novel ASX-Interacting Protein with Tissue-Specific Functions. Developmental Biology, 2001, 234, 441-453.	2.0	10
48	Apical Localization of wingless Transcripts Is Required for Wingless Signaling. Cell, 2001, 105, 197-207.	28.9	112
49	Single and Double FISH Protocols for Drosophila. , 1999, 122, 93-102.		26
50	The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors. Nature, 1997, 385, 548-552.	27.8	180
51	Fluorescence In Situ Hybridization in Whole-Mount <i>Drosophila</i> Embryos. BioTechniques, 1996, 20, 748-750.	1.8	21
52	Patterning of the Drosophila embryo by a homeodomain-deleted Ftz polypeptide. Nature, 1996, 379, 162-165.	27.8	92
53	Modifiers of bx1 alter the distribution of Ubx proteins in haltere imaginal discs of Drosophila. Developmental Biology, 1992, 151, 611-616.	2.0	2
54	Homeodomain-independent activity of the fushi tarazu polypeptide in Drosophila embryos. Nature, 1992, 356, 610-612.	27.8	100