
## Karen Christman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5353365/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Injectable Fibrin Scaffold Improves Cell Transplant Survival, Reduces Infarct Expansion, and Induces<br>Neovasculature Formation in Ischemic Myocardium. Journal of the American College of Cardiology,<br>2004, 44, 654-660.                                     | 2.8  | 501       |
| 2  | Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering.<br>Biomaterials, 2009, 30, 5409-5416.                                                                                                                               | 11.4 | 471       |
| 3  | Fibrin Glue Alone and Skeletal Myoblasts in a Fibrin Scaffold Preserve Cardiac Function after<br>Myocardial Infarction. Tissue Engineering, 2004, 10, 403-409.                                                                                                    | 4.6  | 398       |
| 4  | Biomaterials for the Treatment of Myocardial Infarction. Journal of the American College of Cardiology, 2006, 48, 907-913.                                                                                                                                        | 2.8  | 361       |
| 5  | Safety and Efficacy of an Injectable Extracellular Matrix Hydrogel for Treating Myocardial Infarction.<br>Science Translational Medicine, 2013, 5, 173ra25.                                                                                                       | 12.4 | 357       |
| 6  | Catheter-Deliverable Hydrogel Derived From Decellularized Ventricular Extracellular Matrix<br>Increases Endogenous Cardiomyocytes and Preserves Cardiac Function Post-Myocardial Infarction.<br>Journal of the American College of Cardiology, 2012, 59, 751-763. | 2.8  | 334       |
| 7  | Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials, 2015, 61, 339-348.                                                                         | 11.4 | 265       |
| 8  | Enzymeâ€Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction. Advanced Materials, 2015, 27, 5547-5552.                                                                                          | 21.0 | 229       |
| 9  | Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomaterialia, 2018, 68, 1-14.                                                                                                                                                | 8.3  | 227       |
| 10 | Simple and High Yielding Method for Preparing Tissue Specific Extracellular Matrix Coatings for Cell<br>Culture. PLoS ONE, 2010, 5, e13039.                                                                                                                       | 2.5  | 217       |
| 11 | Biomaterials for the Treatment of Myocardial Infarction. Journal of the American College of Cardiology, 2011, 58, 2615-2629.                                                                                                                                      | 2.8  | 207       |
| 12 | Nanopatterning proteins and peptides. Soft Matter, 2006, 2, 928.                                                                                                                                                                                                  | 2.7  | 202       |
| 13 | Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials, 2013, 34, 8581-8588.                                                                                                   | 11.4 | 197       |
| 14 | Decellularized Porcine Brain Matrix for Cell Culture and Tissue Engineering Scaffolds. Tissue<br>Engineering - Part A, 2011, 17, 2583-2592.                                                                                                                       | 3.1  | 194       |
| 15 | Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert<br>Opinion on Drug Delivery, 2013, 10, 59-72.                                                                                                              | 5.0  | 190       |
| 16 | First-in-Man Study of a Cardiac Extracellular Matrix Hydrogel in Early and Late Myocardial Infarction<br>Patients. JACC Basic To Translational Science, 2019, 4, 659-669.                                                                                         | 4.1  | 183       |
| 17 | A Bioprinted Cardiac Patch Composed of Cardiacâ€Specific Extracellular Matrix and Progenitor Cells<br>for Heart Repair. Advanced Healthcare Materials, 2018, 7, e1800672.                                                                                         | 7.6  | 181       |
| 18 | Injectable hydrogel scaffold from decellularized human lipoaspirate. Acta Biomaterialia, 2011, 7,<br>1040-1049.                                                                                                                                                   | 8.3  | 178       |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Design and Characterization of an Injectable Pericardial Matrix Gel: A Potentially Autologous<br>Scaffold for Cardiac Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 2017-2027.                           | 3.1  | 177       |
| 20 | Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomaterialia, 2012, 8, 3695-3703.                                  | 8.3  | 160       |
| 21 | Injectable Materials for the Treatment of Myocardial Infarction and Heart Failure: The Promise of<br>Decellularized Matrices. Journal of Cardiovascular Translational Research, 2010, 3, 478-486.                     | 2.4  | 158       |
| 22 | Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold<br>for wound healing. Acta Biomaterialia, 2012, 8, 41-50.                                                      | 8.3  | 152       |
| 23 | Positioning Multiple Proteins at the Nanoscale with Electron Beam Cross-Linked Functional Polymers.<br>Journal of the American Chemical Society, 2009, 131, 521-527.                                                  | 13.7 | 137       |
| 24 | Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Current Opinion in Solid State and Materials Science, 2016, 20, 193-201.                                                           | 11.5 | 135       |
| 25 | Decellularized myocardial matrix hydrogels: In basic research and preclinical studies. Advanced Drug<br>Delivery Reviews, 2016, 96, 77-82.                                                                            | 13.7 | 133       |
| 26 | Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model. , 2012, 23, 400-412.                                                                |      | 132       |
| 27 | Evidence for Mechanisms Underlying theÂFunctional Benefits of a Myocardial Matrix Hydrogel for<br>Post-MI Treatment. Journal of the American College of Cardiology, 2016, 67, 1074-1086.                              | 2.8  | 127       |
| 28 | Biomaterials for tissue repair. Science, 2019, 363, 340-341.                                                                                                                                                          | 12.6 | 123       |
| 29 | A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro.<br>Acta Biomaterialia, 2012, 8, 4357-4364.                                                                       | 8.3  | 121       |
| 30 | Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle. Methods, 2015, 84, 53-59.                                                                           | 3.8  | 114       |
| 31 | Nanoscale Growth Factor Patterns by Immobilization on a Heparin-Mimicking Polymer. Journal of the<br>American Chemical Society, 2008, 130, 16585-16591.                                                               | 13.7 | 113       |
| 32 | Fund Black scientists. Cell, 2021, 184, 561-565.                                                                                                                                                                      | 28.9 | 107       |
| 33 | Oxime Crossâ€Linked Injectable Hydrogels for Catheter Delivery. Advanced Materials, 2013, 25, 2937-2942.                                                                                                              | 21.0 | 103       |
| 34 | Restoration of left ventricular geometry and improvement of left ventricular function in a rodent<br>model of chronic ischemic cardiomyopathy. Journal of Thoracic and Cardiovascular Surgery, 2009,<br>137, 180-187. | 0.8  | 100       |
| 35 | Concise Review: Injectable Biomaterials for the Treatment of Myocardial Infarction and Peripheral<br>Artery Disease: Translational Challenges and Progress. Stem Cells Translational Medicine, 2014, 3,<br>1090-1099. | 3.3  | 98        |
| 36 | Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer. Biomaterials, 2005, 26, 1139-1144.                                                               | 11.4 | 97        |

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Increased Infarct Wall Thickness by a Bio-Inert Material Is Insufficient to Prevent Negative Left<br>Ventricular Remodeling after Myocardial Infarction. PLoS ONE, 2011, 6, e21571. | 2.5  | 96        |
| 38 | Materials Science and Tissue Engineering: Repairing the Heart. Mayo Clinic Proceedings, 2013, 88, 884-898.                                                                          | 3.0  | 95        |
| 39 | Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel.<br>Nanotechnology, 2011, 22, 494015.                                                          | 2.6  | 94        |
| 40 | Delivery of an engineered HGF fragment in an extracellular matrix-derived hydrogel prevents negative<br>LV remodeling post-myocardial infarction. Biomaterials, 2015, 45, 56-63.    | 11.4 | 90        |
| 41 | Extracellular Matrix Hydrogel Promotes Tissue Remodeling, Arteriogenesis, and Perfusion in a Rat<br>Hindlimb Ischemia Model. JACC Basic To Translational Science, 2016, 1, 32-44.   | 4.1  | 83        |
| 42 | Site-specific protein immobilization through N-terminal oxime linkages. Journal of Materials<br>Chemistry, 2007, 17, 2021.                                                          | 6.7  | 81        |
| 43 | Modulation of Material Properties of a Decellularized Myocardial Matrix Scaffold. Macromolecular<br>Bioscience, 2011, 11, 731-738.                                                  | 4.1  | 78        |
| 44 | Submicron Streptavidin Patterns for Protein Assembly. Langmuir, 2006, 22, 7444-7450.                                                                                                | 3.5  | 77        |
| 45 | Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials. Biomaterials, 2017, 129, 98-110.                            | 11.4 | 73        |
| 46 | Protein Micropatterns Using a pH-Responsive Polymer and Light. Langmuir, 2005, 21, 8389-8393.                                                                                       | 3.5  | 65        |
| 47 | Modulating in vivo degradation rate of injectable extracellular matrix hydrogels. Journal of<br>Materials Chemistry B, 2016, 4, 2794-2802.                                          | 5.8  | 65        |
| 48 | Engineering an Injectable Muscle-Specific Microenvironment for Improved Cell Delivery Using a<br>Nanofibrous Extracellular Matrix Hydrogel. ACS Nano, 2017, 11, 3851-3859.          | 14.6 | 62        |
| 49 | Designing Acellular Injectable Biomaterial Therapeutics for Treating Myocardial Infarction and Peripheral Artery Disease. JACC Basic To Translational Science, 2017, 2, 212-226.    | 4.1  | 60        |
| 50 | Self-Assembled Colloidal Gel Using Cell Membrane-Coated Nanosponges as Building Blocks. ACS Nano, 2017, 11, 11923-11930.                                                            | 14.6 | 59        |
| 51 | Cardiac-Derived Extracellular Matrix Enhances Cardiogenic Properties of Human Cardiac Progenitor<br>Cells. Cell Transplantation, 2016, 25, 1653-1663.                               | 2.5  | 58        |
| 52 | Effects of resveratrol on the autophosphorylation of phorbol ester-responsive protein kinases.<br>Biochemical Pharmacology, 2000, 60, 1355-1359.                                    | 4.4  | 57        |
| 53 | Pleiotrophin induces formation of functional neovasculature in vivo. Biochemical and Biophysical<br>Research Communications, 2005, 332, 1146-1152.                                  | 2.1  | 54        |
| 54 | Micro- and nanoparticles for treating cardiovascular disease. Biomaterials Science, 2015, 3, 564-580.                                                                               | 5.4  | 52        |

| #  | Article                                                                                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Developing injectable nanomaterials to repair the heart. Current Opinion in Biotechnology, 2015, 34, 225-231.                                                                                                                                                                                                                                      | 6.6  | 52        |
| 56 | Award winner for outstanding research in the PhD category, 2014 society for biomaterials annual<br>meeting and exposition, denver, colorado, april 16–19, 2014: Decellularized adipose matrix hydrogels<br>stimulate in vivo neovascularization and adipose formation. Journal of Biomedical Materials Research<br>- Part A, 2014, 102, 1641-1651. | 4.0  | 51        |
| 57 | Tunable Protein Release from Acetalated Dextran Microparticles: A Platform for Delivery of Protein Therapeutics to the Heart Post-MI. Biomacromolecules, 2013, 14, 3927-3935.                                                                                                                                                                      | 5.4  | 48        |
| 58 | Electrochemically Controllable Conjugation of Proteins on Surfaces. Bioconjugate Chemistry, 2007, 18, 1919-1923.                                                                                                                                                                                                                                   | 3.6  | 41        |
| 59 | Fibroblasts influence muscle progenitor differentiation and alignment in contact independent and dependent manners in organized co-culture devices. Biomedical Microdevices, 2013, 15, 161-169.                                                                                                                                                    | 2.8  | 37        |
| 60 | Preventing post-surgical cardiac adhesions with a catechol-functionalized oxime hydrogel. Nature Communications, 2021, 12, 3764.                                                                                                                                                                                                                   | 12.8 | 37        |
| 61 | Patient-to-Patient Variability in Autologous Pericardial Matrix Scaffolds for Cardiac Repair. Journal of Cardiovascular Translational Research, 2011, 4, 545-556.                                                                                                                                                                                  | 2.4  | 35        |
| 62 | Protein Nanopatterns by Oxime Bond Formation. Langmuir, 2011, 27, 1415-1418.                                                                                                                                                                                                                                                                       | 3.5  | 31        |
| 63 | Manufacturing considerations for producing and assessing decellularized extracellular matrix hydrogels. Methods, 2020, 171, 20-27.                                                                                                                                                                                                                 | 3.8  | 31        |
| 64 | In vivo response to dynamic hyaluronic acid hydrogels. Acta Biomaterialia, 2013, 9, 7151-7157.                                                                                                                                                                                                                                                     | 8.3  | 30        |
| 65 | Intramyocardial injection of hydrogel with high interstitial spread does not impact action potential propagation. Acta Biomaterialia, 2015, 26, 13-22.                                                                                                                                                                                             | 8.3  | 28        |
| 66 | Decellularized skeletal muscle as an inÂvitro model for studying drug-extracellular matrix<br>interactions. Biomaterials, 2015, 64, 108-114.                                                                                                                                                                                                       | 11.4 | 27        |
| 67 | Degradable Acetalated Dextran Microparticles for Tunable Release of an Engineered Hepatocyte<br>Growth Factor Fragment. ACS Biomaterials Science and Engineering, 2016, 2, 197-204.                                                                                                                                                                | 5.2  | 26        |
| 68 | Decellularized Extracellular Matrix Hydrogels as a Delivery Platform for MicroRNA and Extracellular Vesicle Therapeutics. Advanced Therapeutics, 2018, 1, 1800032.                                                                                                                                                                                 | 3.2  | 26        |
| 69 | Surface initiated actin polymerization from top-down manufactured nanopatterns. Soft Matter, 2007, 3, 541.                                                                                                                                                                                                                                         | 2.7  | 24        |
| 70 | Fibronectin and Cyclic Strain Improve Cardiac Progenitor Cell Regenerative Potential <i>In Vitro</i> .<br>Stem Cells International, 2016, 2016, 1-11.                                                                                                                                                                                              | 2.5  | 23        |
| 71 | Dose optimization of decellularized skeletal muscle extracellular matrix hydrogels for improving<br>perfusion and subsequent validation in an aged hindlimb ischemia model. Biomaterials Science, 2020, 8,<br>3511-3521.                                                                                                                           | 5.4  | 20        |
| 72 | Enzyme-targeted nanoparticles for delivery to ischemic skeletal muscle. Polymer Chemistry, 2017, 8, 5212-5219.                                                                                                                                                                                                                                     | 3.9  | 19        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Differential β <sub>3</sub> Integrin Expression Regulates the Response of Human Lung and Cardiac<br>Fibroblasts to Extracellular Matrix and Its Components. Tissue Engineering - Part A, 2015, 21, 2195-2205.                     | 3.1  | 18        |
| 74 | NANOPATTERNED INTERFACES FOR CONTROLLING CELL BEHAVIOR. Nano LIFE, 2010, 01, 63-77.                                                                                                                                               | 0.9  | 16        |
| 75 | Binding of Anticell Adhesive Oximeâ€Crosslinked PEG Hydrogels to Cardiac Tissues. Advanced<br>Healthcare Materials, 2015, 4, 1327-1331.                                                                                           | 7.6  | 16        |
| 76 | Human cardiomyogenesis and the need for systems biology analysis. Wiley Interdisciplinary Reviews:<br>Systems Biology and Medicine, 2011, 3, 666-680.                                                                             | 6.6  | 13        |
| 77 | <i>In vivo</i> evaluation of bioprinted cardiac patches composed of cardiac-specific extracellular<br>matrix and progenitor cells in a model of pediatric heart failure. Biomaterials Science, 2022, 10,<br>444-456.              | 5.4  | 12        |
| 78 | Quantifying the Effects of Aging on Morphological and Cellular Properties of Human Female Pelvic<br>Floor Muscles. Annals of Biomedical Engineering, 2021, 49, 1836-1847.                                                         | 2.5  | 10        |
| 79 | Targeted nanoscale therapeutics for myocardial infarction. Biomaterials Science, 2021, 9, 1204-1216.                                                                                                                              | 5.4  | 9         |
| 80 | Humanized mouse model for evaluating biocompatibility and human immune cell interactions to biomaterials. Drug Discovery Today: Disease Models, 2017, 24, 23-29.                                                                  | 1.2  | 6         |
| 81 | Treating the Leading Killer. Science Translational Medicine, 2012, 4, 146fs26.                                                                                                                                                    | 12.4 | 4         |
| 82 | Stimuli-Responsive Materials: Enzyme-Responsive Nanoparticles for Targeted Accumulation and<br>Prolonged Retention in Heart Tissue after Myocardial Infarction (Adv. Mater. 37/2015). Advanced<br>Materials, 2015, 27, 5446-5446. | 21.0 | 3         |
| 83 | Injectable Hydrogels for Cardiac Tissue Regeneration Post-Myocardial Infarction. , 2016, , 377-414.                                                                                                                               |      | 2         |
| 84 | Multimodal imaging assessment and histologic correlation of the female rat pelvic floor muscles'<br>anatomy. Journal of Anatomy, 2019, 234, 543-550.                                                                              | 1.5  | 2         |
| 85 | Characterization of decellularized left and right ventricular myocardial matrix hydrogels and their effects on cardiac progenitor cells. Journal of Molecular and Cellular Cardiology, 2022, 171, 45-55.                          | 1.9  | 2         |
| 86 | Hydrogels: Oxime Cross‣inked Injectable Hydrogels for Catheter Delivery (Adv. Mater. 21/2013).<br>Advanced Materials, 2013, 25, 3008-3008.                                                                                        | 21.0 | 0         |
| 87 | Editorial to "Evaluating biomaterials and implanted devices― Drug Discovery Today: Disease Models,<br>2017, 24, 1-3.                                                                                                              | 1.2  | 0         |
| 88 | Mechanical impact of parturitionâ€related strains on rat pelvic striated sphincters. Neurourology and<br>Urodynamics, 2019, 38, 912-919.                                                                                          | 1.5  | 0         |
| 89 | Processed Tissues. , 2020, , 377-399.                                                                                                                                                                                             |      | 0         |