
Geoffrey C Gurtner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/535333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wound repair and regeneration. Nature, 2008, 453, 314-321.	27.8	4,690
2	Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 2004, 10, 858-864.	30.7	2,385
3	Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair and Regeneration, 2009, 17, 763-771.	3.0	2,277
4	Wound Healing: A Cellular Perspective. Physiological Reviews, 2019, 99, 665-706.	28.8	1,303
5	Quantitative and reproducible murine model of excisional wound healing. Wound Repair and Regeneration, 2004, 12, 485-492.	3.0	592
6	Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science, 2015, 348, aaa2151.	12.6	520
7	Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB Journal, 2007, 21, 3250-3261.	0.5	422
8	Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow–derived cells. Blood, 2005, 105, 1068-1077.	1.4	402
9	Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nature Medicine, 2012, 18, 148-152.	30.7	391
10	Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials, 2012, 33, 80-90.	11.4	340
11	Preventing <i>Engrailed-1</i> activation in fibroblasts yields wound regeneration without scarring. Science, 2021, 372, .	12.6	269
12	Surgical Approaches to Create Murine Models of Human Wound Healing. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-8.	3.0	263
13	The Role of Hypoxia-Inducible Factor in Wound Healing. Advances in Wound Care, 2014, 3, 390-399.	5.1	257
14	Hypertrophic Scar Formation Following Burns and Trauma: New Approaches to Treatment. PLoS Medicine, 2007, 4, e234.	8.4	252
15	Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science, 2022, 375, 1411-1417.	12.6	230
16	Injectable and Tunable Gelatin Hydrogels Enhance Stem Cell Retention and Improve Cutaneous Wound Healing. Advanced Functional Materials, 2017, 27, 1606619.	14.9	226
17	Improving Cutaneous Scar Formation by Controlling the Mechanical Environment. Annals of Surgery, 2011, 254, 217-225.	4.2	218
18	Decreasing Intracellular Superoxide Corrects Defective Ischemia-induced New Vessel Formation in Diabetic Mice. Journal of Biological Chemistry, 2008, 283, 10930-10938.	3.4	207

#	Article	IF	CITATIONS
19	Age Decreases Endothelial Progenitor Cell Recruitment Through Decreases in Hypoxia-Inducible Factor 1α Stabilization During Ischemia. Circulation, 2007, 116, 2818-2829.	1.6	193
20	<i>db/db</i> mice exhibit severe woundâ€healing impairments compared with other murine diabetic strains in a siliconeâ€splinted excisional wound model. Wound Repair and Regeneration, 2007, 15, 665-670.	3.0	191
21	Mesenchymal Stem Cells Home to Sites of Injury and Inflammation. Advances in Wound Care, 2012, 1, 147-152.	5.1	176
22	Pushing Back: Wound Mechanotransduction in Repair and Regeneration. Journal of Investigative Dermatology, 2011, 131, 2186-2196.	0.7	175
23	Transdermal deferoxamine prevents pressure-induced diabetic ulcers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 94-99.	7.1	160
24	Mechanotransduction and fibrosis. Journal of Biomechanics, 2014, 47, 1997-2005.	2.1	157
25	Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Research and Therapy, 2014, 5, 79.	5.5	153
26	Mechanical Forces in Cutaneous Wound Healing: Emerging Therapies to Minimize Scar Formation. Advances in Wound Care, 2018, 7, 47-56.	5.1	150
27	CD105 Protein Depletion Enhances Human Adipose-derived Stromal Cell Osteogenesis through Reduction of Transforming Growth Factor β1 (TGF-β1) Signaling. Journal of Biological Chemistry, 2011, 286, 39497-39509.	3.4	144
28	Progress and Potential for Regenerative Medicine. Annual Review of Medicine, 2007, 58, 299-312.	12.2	143
29	Engineered Pullulan–Collagen Composite Dermal Hydrogels Improve Early Cutaneous Wound Healing. Tissue Engineering - Part A, 2011, 17, 631-644.	3.1	142
30	Angiogenic properties of dehydrated human amnion/chorion allografts: therapeutic potential for soft tissue repair and regeneration. Vascular Cell, 2014, 6, 10.	0.2	141
31	Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Scientific Reports, 2014, 4, 7144.	3.3	140
32	The Foreign Body Response. Plastic and Reconstructive Surgery, 2015, 135, 1489-1498.	1.4	135
33	Successful Translation of Fluorescence Navigation During Oncologic Surgery: A Consensus Report. Journal of Nuclear Medicine, 2016, 57, 144-150.	5.0	125
34	Scarless Wound Healing. Plastic and Reconstructive Surgery, 2015, 135, 907-917.	1.4	116
35	Stem cell therapies for wound healing. Expert Opinion on Biological Therapy, 2019, 19, 575-585.	3.1	116
36	Soft tissue mechanotransduction in wound healing and fibrosis. Seminars in Cell and Developmental Biology, 2012, 23, 981-986.	5.0	102

#	Article	IF	CITATIONS
37	Capillary Force Seeding of Hydrogels for Adipose-Derived Stem Cell Delivery in Wounds. Stem Cells Translational Medicine, 2014, 3, 1079-1089.	3.3	100
38	Challenges and Opportunities in Drug Delivery for Wound Healing. Advances in Wound Care, 2016, 5, 79-88.	5.1	100
39	Stem Cell Niches for Skin Regeneration. International Journal of Biomaterials, 2012, 2012, 1-8.	2.4	98
40	Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomaterialia, 2020, 108, 56-66.	8.3	95
41	Tracking the Elusive Fibrocyte: Identification and Characterization of Collagenâ€Producing Hematopoietic Lineage Cells During Murine Wound Healing. Stem Cells, 2014, 32, 1347-1360.	3.2	93
42	Aging and Diabetes Impair the Neovascular Potential of Adipose-Derived Stromal Cells. Plastic and Reconstructive Surgery, 2009, 123, 475-485.	1.4	91
43	Laser Treatment of Traumatic Scars and Contractures: 2020 International Consensus Recommendations. Lasers in Surgery and Medicine, 2020, 52, 96-116.	2.1	89
44	Pullulan Hydrogels Improve Mesenchymal Stem Cell Delivery into Highâ€Oxidativeâ€Stress Wounds. Macromolecular Bioscience, 2011, 11, 1458-1466.	4.1	88
45	A Randomized Controlled Trial of the embrace Advanced Scar Therapy Device to Reduce Incisional Scar Formation. Plastic and Reconstructive Surgery, 2014, 134, 536-546.	1.4	87
46	Therapeutic potential of bone marrow-derived mesenchymal stem cells for cutaneous wound healing. Frontiers in Immunology, 2012, 3, 192.	4.8	84
47	Chronic wounds: Treatment consensus. Wound Repair and Regeneration, 2022, 30, 156-171.	3.0	83
48	Pressure Injury. Annals of Surgery, 2020, 271, 671-679.	4.2	82
49	Pharmacological rescue of diabetic skeletal stem cell niches. Science Translational Medicine, 2017, 9, .	12.4	80
50	The embrace Device Significantly Decreases Scarring following Scar Revision Surgery in a Randomized Controlled Trial. Plastic and Reconstructive Surgery, 2014, 133, 398-405.	1.4	78
51	Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	76
52	Cell-Assisted Lipotransfer Improves Volume Retention in Irradiated Recipient Sites and Rescues Radiation-Induced Skin Changes. Stem Cells, 2016, 34, 668-673.	3.2	71
53	Mechanotransduction in Wound Healing and Fibrosis. Journal of Clinical Medicine, 2020, 9, 1423.	2.4	71
54	Hydrogel Scaffolds to Deliver Cell Therapies for Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 660145.	4.1	69

#	Article	IF	CITATIONS
55	Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing. Cell Stem Cell, 2022, 29, 315-327.e6.	11.1	69
56	Wound Healing: A Paradigm for Regeneration. Mayo Clinic Proceedings, 2013, 88, 1022-1031.	3.0	67
57	Cell recruitment by amnion chorion grafts promotes neovascularization. Journal of Surgical Research, 2015, 193, 953-962.	1.6	65
58	Rapid identification of slow healing wounds. Wound Repair and Regeneration, 2016, 24, 181-188.	3.0	64
59	Consensus Conference Statement on the General Use of Near-infrared Fluorescence Imaging and Indocyanine Green Guided Surgery. Annals of Surgery, 2022, 275, 685-691.	4.2	63
60	Synthetic and Bone tissue engineering graft substitutes: What is the future?. Injury, 2021, 52, S72-S77.	1.7	62
61	Mesenchymal Stem Cells Can Participate in Ischemic Neovascularization. Plastic and Reconstructive Surgery, 2009, 123, 45S-55S.	1.4	61
62	An Information Theoretic, Microfluidic-Based Single Cell Analysis Permits Identification of Subpopulations among Putatively Homogeneous Stem Cells. PLoS ONE, 2011, 6, e21211.	2.5	61
63	Regenerative Medicine: Charting a New Course in Wound Healing. Advances in Wound Care, 2016, 5, 314-328.	5.1	60
64	Diabetes Irreversibly Depletes Bone Marrow–Derived Mesenchymal Progenitor Cell Subpopulations. Diabetes, 2014, 63, 3047-3056.	0.6	58
65	Adipose-Derived Stem Cell-Seeded Hydrogels Increase Endogenous Progenitor Cell Recruitment and Neovascularization in Wounds. Tissue Engineering - Part A, 2016, 22, 295-305.	3.1	57
66	Acceleration of Diabetic Wound Regeneration using an In Situ–Formed Stem ellâ€Based Skin Substitute. Advanced Healthcare Materials, 2018, 7, e1800432.	7.6	56
67	Elucidating the fundamental fibrotic processes driving abdominal adhesion formation. Nature Communications, 2020, 11, 4061.	12.8	52
68	Cas9-AAV6-engineered human mesenchymal stromal cells improved cutaneous wound healing in diabetic mice. Nature Communications, 2020, 11, 2470.	12.8	52
69	Comparison of the Hydroxylase Inhibitor Dimethyloxalylglycine and the Iron Chelator Deferoxamine in Diabetic and Aged Wound Healing. Plastic and Reconstructive Surgery, 2017, 139, 695e-706e.	1.4	50
70	A rapid crosslinking injectable hydrogel for stem cell delivery, from multifunctional hyperbranched polymers via RAFT homopolymerization of PEGDA. Polymer Chemistry, 2015, 6, 6182-6192.	3.9	46
71	Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies. Nature Communications, 2016, 7, 11945.	12.8	46
72	Single-Cell Transcriptomics of Human Mesenchymal Stem Cells Reveal Age-Related Cellular Subpopulation Depletion and Impaired Regenerative Function. Stem Cells, 2019, 37, 240-246.	3.2	46

#	Article	IF	CITATIONS
73	Controlled Delivery of a Focal Adhesion Kinase Inhibitor Results in Accelerated Wound Closure with Decreased ScarÂFormation. Journal of Investigative Dermatology, 2018, 138, 2452-2460.	0.7	45
74	Prrx1 Fibroblasts Represent a Pro-fibrotic Lineage in the Mouse Ventral Dermis. Cell Reports, 2020, 33, 108356.	6.4	44
75	Disrupting biological sensors of force promotes tissue regeneration in large organisms. Nature Communications, 2021, 12, 5256.	12.8	43
76	A Mechanomodulatory Device to Minimize Incisional Scar Formation. Advances in Wound Care, 2013, 2, 185-194.	5.1	41
77	Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells. Stem Cells Translational Medicine, 2016, 5, 248-257.	3.3	40
78	The Interplay of Mechanical Stress, Strain, and Stiffness at the Keloid Periphery Correlates with Increased Caveolin-1/ROCK Signaling and Scar Progression. Plastic and Reconstructive Surgery, 2019, 144, 58e-67e.	1.4	39
79	High-Throughput Screening of Surface Marker Expression on Undifferentiated and Differentiated Human Adipose-Derived Stromal Cells. Tissue Engineering - Part A, 2015, 21, 2281-2291.	3.1	38
80	A Matched-Pair Analysis of Prepectoral with Subpectoral Breast Reconstruction: Is There a Difference in Postoperative Complication Rate?. Plastic and Reconstructive Surgery, 2019, 144, 801-807.	1.4	38
81	Mechanical offloading of incisional wounds is associated with transcriptional downregulation of inflammatory pathways in a large animal model. Organogenesis, 2014, 10, 186-193.	1.2	36
82	Progenitor Cell Dysfunctions Underlie Some Diabetic Complications. American Journal of Pathology, 2015, 185, 2607-2618.	3.8	36
83	Ageâ€associated intracellular superoxide dismutase deficiency potentiates dermal fibroblast dysfunction during wound healing. Experimental Dermatology, 2019, 28, 485-492.	2.9	35
84	Isolation of CD248â€expressing stromal vascular fraction for targeted improvement of wound healing. Wound Repair and Regeneration, 2017, 25, 414-422.	3.0	34
85	Characterization of Diabetic and Non-Diabetic Foot Ulcers Using Single-Cell RNA-Sequencing. Micromachines, 2020, 11, 815.	2.9	34
86	Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function. Experimental Dermatology, 2016, 25, 206-211.	2.9	33
87	Protecting Nipple Perfusion by Devascularization and Surgical Delay in Patients at Risk for Ischemic Complications During Nipple-Sparing Mastectomies. Annals of Surgical Oncology, 2016, 23, 2665-2672.	1.5	33
88	Ultrasound-assisted liposuction provides a source for functional adipose-derived stromal cells. Cytotherapy, 2017, 19, 1491-1500.	0.7	33
89	Suction assisted liposuction does not impair the regenerative potential of adipose derived stem cells. Journal of Translational Medicine, 2016, 14, 126.	4.4	32
90	JUN promotes hypertrophic skin scarring via CD36 in preclinical in vitro and in vivo models. Science Translational Medicine, 2021, 13, eabb3312.	12.4	32

#	Article	IF	CITATIONS
91	Optimization of transdermal deferoxamine leads to enhanced efficacy in healing skin wounds. Journal of Controlled Release, 2019, 308, 232-239.	9.9	31
92	Adipose-Derived Stromal Cells Seeded in Pullulan-Collagen Hydrogels Improve Healing in Murine Burns. Tissue Engineering - Part A, 2021, 27, 844-856.	3.1	31
93	Disrupting mechanotransduction decreases fibrosis and contracture in split-thickness skin grafting. Science Translational Medicine, 2022, 14, eabj9152.	12.4	31
94	Regenerative Medicine. Current Problems in Surgery, 2011, 48, 148-212.	1.1	30
95	A histological and mechanical analysis of the cardiac lead–tissue interface: implications for lead extraction. Acta Biomaterialia, 2014, 10, 2200-2208.	8.3	28
96	Acceleration of Diabetic Wound Healing with PHD2- and miR-210-Targeting Oligonucleotides. Tissue Engineering - Part A, 2019, 25, 44-54.	3.1	28
97	Cellular Response to a Novel Fetal Acellular Collagen Matrix: Implications for Tissue Regeneration. International Journal of Biomaterials, 2013, 2013, 1-9.	2.4	27
98	<i>In Vivo</i> Models for the Study of Fibrosis. Advances in Wound Care, 2019, 8, 645-654.	5.1	27
99	<scp>Pullulanâ€Collagen</scp> hydrogel wound dressing promotes dermal remodelling and wound healing compared to commercially available collagen dressings. Wound Repair and Regeneration, 2022, 30, 397-408.	3.0	27
100	Hyperbaric Oxygen Therapy: Descriptive Review of the Technology and Current Application in Chronic Wounds. Plastic and Reconstructive Surgery - Global Open, 2020, 8, e3136.	0.6	26
101	Xenogeneic skin transplantation promotes angiogenesis and tissue regeneration through activated Trem2 ⁺ macrophages. Science Advances, 2021, 7, eabi4528.	10.3	26
102	Epidermal or Dermal Specific Knockout of PHD-2 Enhances Wound Healing and Minimizes Ischemic Injury. PLoS ONE, 2014, 9, e93373.	2.5	24
103	Enrichment of Adipose-Derived Stromal Cells for BMPR1A Facilitates Enhanced Adipogenesis. Tissue Engineering - Part A, 2016, 22, 214-221.	3.1	23
104	A Novel Mouse Model for Frostbite Injury. Wilderness and Environmental Medicine, 2013, 24, 94-104.	0.9	22
105	Gene expression in fetal murine keratinocytes and fibroblasts. Journal of Surgical Research, 2014, 190, 344-357.	1.6	21
106	Modulating Cellular Responses to Mechanical Forces to Promote Wound Regeneration. Advances in Wound Care, 2022, 11, 479-495.	5.1	21
107	Small molecule inhibition of dipeptidyl peptidase-4 enhances bone marrow progenitor cell function and angiogenesis in diabetic wounds. Translational Research, 2019, 205, 51-63.	5.0	20
108	Wound Center Without Walls: The New Model of Providing Care During the COVID-19 Pandemic. Wounds, 2020, 32, 178-185.	0.5	20

#	Article	IF	CITATIONS
109	The Abnormal Architecture of Healed Diabetic Ulcers Is the Result of FAK Degradation by Calpain 1. Journal of Investigative Dermatology, 2017, 137, 1155-1165.	0.7	19
110	Deferoxamine can prevent pressure ulcers and accelerate healing in aged mice. Wound Repair and Regeneration, 2018, 26, 300-305.	3.0	19
111	From Bedside to Bench and Back Again: Technology Innovation in Plastic Surgery. Plastic and Reconstructive Surgery, 2009, 124, 1355-1356.	1.4	17
112	High-Throughput Single-Cell Analysis for Wound Healing Applications. Advances in Wound Care, 2013, 2, 457-469.	5.1	17
113	Multiple Subsets of Brain Tumor Initiating Cells Coexist in Glioblastoma. Stem Cells, 2016, 34, 1702-1707.	3.2	17
114	Beneath the Surface: A Review of Laser Remodeling of Hypertrophic Scars and Burns. Advances in Wound Care, 2019, 8, 168-176.	5.1	17
115	Prophylactic treatment with transdermal deferoxamine mitigates radiation-induced skin fibrosis. Scientific Reports, 2020, 10, 12346.	3.3	17
116	Mechanical Strain Drives Myeloid Cell Differentiation Toward Proinflammatory Subpopulations. Advances in Wound Care, 2022, 11, 466-478.	5.1	17
117	Optimizing Outcomes of Postmastectomy Breast Reconstruction With Acellular Dermal Matrix: A Review of Recent Clinical Data. Eplasty, 2017, 17, e18.	0.4	17
118	Murine Dermal Fibroblast Isolation by FACS. Journal of Visualized Experiments, 2016, , .	0.3	16
119	Wound healing outcomes: Using big data and a modified intentâ€ŧoâ€ŧreat method as a metric for reporting healing rates. Wound Repair and Regeneration, 2017, 25, 665-672.	3.0	16
120	Short Hairpin RNA Silencing of PHD-2 Improves Neovascularization and Functional Outcomes in Diabetic Wounds and Ischemic Limbs. PLoS ONE, 2016, 11, e0150927.	2.5	16
121	Poly-l-Arginine Topical Lotion Tested in a Mouse Model for Frostbite Injury. Wilderness and Environmental Medicine, 2014, 25, 160-165.	0.9	15
122	Is early inflammation good or bad? Linking early immune changes to hypertrophic scarring. Experimental Dermatology, 2017, 26, 133-134.	2.9	15
123	Macrophage Subpopulation Dynamics Shift following Intravenous Infusion of Mesenchymal Stromal Cells. Molecular Therapy, 2020, 28, 2007-2022.	8.2	15
124	A bioactive compliant vascular graft modulates macrophage polarization and maintains patency with robust vascular remodeling. Bioactive Materials, 2023, 19, 167-178.	15.6	15
125	An Improved Humanized Mouse Model for Excisional Wound Healing Using Double Transgenic Mice. Advances in Wound Care, 2018, 7, 11-17.	5.1	14
126	Impaired Neovascularization in Aging. Advances in Wound Care, 2020, 9, 111-126.	5.1	14

#	Article	IF	CITATIONS
127	Black, White, and Gray: Macrophages in Skin Repair and Disease. Current Pathobiology Reports, 2017, 5, 333-342.	3.4	13
128	Using intraoperative laser angiography to safeguard nipple perfusion in nipple-sparing mastectomies. Gland Surgery, 2015, 4, 497-505.	1.1	13
129	High-Resolution Microfluidic Single-Cell Transcriptional Profiling Reveals Clinically Relevant Subtypes among Human Stem Cell Populations Commonly Utilized in Cell-Based Therapies. Frontiers in Neurology, 2016, 7, 41.	2.4	12
130	Nipple Reconstruction with the Biodesign Nipple Reconstruction Cylinder: A Prospective Clinical Study. Plastic and Reconstructive Surgery - Global Open, 2016, 4, e832.	0.6	12
131	Topical Deferoxamine Alleviates Skin Injury and Normalizes Atomic Force Microscopy Patterns Following Radiation in a Murine Breast Reconstruction Model. Annals of Plastic Surgery, 2018, 81, 604-608.	0.9	12
132	Hyperbaric Oxygen Therapy in Management of Diabetic Foot Ulcers: Indocyanine Green Angiography May Be Used as a Biomarker to Analyze Perfusion and Predict Response to Treatment. Plastic and Reconstructive Surgery, 2021, 147, 209-214.	1.4	12
133	Iron Chelation with Transdermal Deferoxamine Accelerates Healing of Murine Sickle Cell Ulcers. Advances in Wound Care, 2018, 7, 323-332.	5.1	11
134	Surveillance of Stem Cell Fate and Function: A System for Assessing Cell Survival and Collagen Expression <i>In Situ</i> . Tissue Engineering - Part A, 2016, 22, 31-40.	3.1	10
135	Er:YAG laser vs. sharp debridement in management of chronic wounds: Effects on pain and bacterial load. Wound Repair and Regeneration, 2020, 28, 118-125.	3.0	10
136	Cryopreserved human skin allografts promote angiogenesis and dermal regeneration in a murine model. International Wound Journal, 2020, 17, 925-936.	2.9	10
137	A comparative analysis of deferoxamine treatment modalities for dermal radiationâ€induced fibrosis. Journal of Cellular and Molecular Medicine, 2021, 25, 10028-10038.	3.6	10
138	Adult Stem Cells in Small Animal Wound Healing Models. Methods in Molecular Biology, 2013, 1037, 81-98.	0.9	9
139	Enhanced Electrochemical Sensing with Carbon Nanotubes Modified with Bismuth and Magnetic Nanoparticles in a Labâ€onâ€aâ€Chip. ChemNanoMat, 2016, 2, 904-910.	2.8	9
140	Identifying risk factors for postoperative major complications in staged implantâ€based breast reconstruction with AlloDerm. Breast Journal, 2019, 25, 597-603.	1.0	9
141	Current and Emerging Topical Scar Mitigation Therapies for Craniofacial Burn Wound Healing. Frontiers in Physiology, 2020, 11, 916.	2.8	9
142	Tissue Engineering of Axially Vascularized Soft-Tissue Flaps with a Poly-(É›-Caprolactone) Nanofiber-Hydrogel Composite. Advances in Wound Care, 2020, 9, 365-377.	5.1	8
143	Standardizing Dimensionless Cutometer Parameters to Determine <i>In Vivo</i> Elasticity of Human Skin. Advances in Wound Care, 2022, 11, 297-310.	5.1	8
144	Mechanobiology of skin diseases and wound healing. , 2018, , 415-448.		6

Mechanobiology of skin diseases and wound healing. , 2018, , 415-448. 144

#	Article	IF	CITATIONS
145	Wounds Inhibit Tumor Growth In Vivo. Annals of Surgery, 2021, 273, 173-180.	4.2	6
146	Neovascularization in diabetes. Expert Review of Endocrinology and Metabolism, 2010, 5, 99-111.	2.4	5
147	Filamin A Mediates Wound Closure by Promoting Elastic Deformation and Maintenance of Tension in the Collagen Matrix. Journal of Investigative Dermatology, 2015, 135, 2569-2571.	0.7	5
148	Finding a needle in a "needlestackâ€: Cell Cycle, 2016, 15, 3331-3332.	2.6	5
149	A multivariable miRNA signature delineates the systemic hemodynamic impact of arteriovenous shunt placement in a pilot study. Scientific Reports, 2020, 10, 21809.	3.3	5
150	Inhibiting Fibroblast Mechanotransduction Modulates Severity of Idiopathic Pulmonary Fibrosis. Advances in Wound Care, 2022, 11, 511-523.	5.1	5
151	IQGAP1â€mediated mechanical signaling promotes the foreign body response to biomedical implants. FASEB Journal, 2022, 36, e22007.	0.5	5
152	Surgical Therapies and Tissue Engineering: At the Intersection Between Innovation and Regulation. Tissue Engineering - Part A, 2016, 22, 397-400.	3.1	4
153	Pathway Analysis of Gene Expression of E14 Versus E18 Fetal Fibroblasts. Advances in Wound Care, 2018, 7, 1-10.	5.1	4
154	Enrichment of Nanofiber Hydrogel Composite with Fractionated Fat Promotes Regenerative Macrophage Polarization and Vascularization for Soft-Tissue Engineering. Plastic and Reconstructive Surgery, 2022, 149, 433e-444e.	1.4	4
155	Reinforced Biologic Mesh Reduces Postoperative Complications Compared to Biologic Mesh after Ventral Hernia Repair. Plastic and Reconstructive Surgery - Global Open, 2022, 10, e4083.	0.6	4
156	Pathway Analysis of Gene Expression in Murine Fetal and Adult Wounds <i>This abstract has been presented at the 8th Annual Academic Surgical Congress on February 5–7, 2013 in New Orleans, Louisiana and the 26th Annual Meeting of the Wound Healing Society on April 23–27, 2014 in Orlando, Florida.</i> . Advances in Wound Care, 2018, 7, 262-275.	5.1	3
157	Matchedâ€cohort study comparing bioactive human splitâ€thickness skin allograft plus standard of care to standard of care alone in the treatment of diabetic ulcers: A retrospective analysis across 470 institutions. Wound Repair and Regeneration, 2020, 28, 81-89.	3.0	3
158	The Plane of Mesh Placement Does Not Impact Abdominal Donor Site Complications in Microsurgical Breast Reconstruction. Annals of Plastic Surgery, 2021, 87, 542-546.	0.9	3
159	Foot Burns in Persons With Diabetes: Outcomes From the National Trauma Data Bank. Journal of Burn Care and Research, 2022, 43, 541-547.	0.4	3
160	Holy grail of tissue regeneration: Size. BioEssays, 2022, 44, .	2.5	3
161	Preoperative βâ€lactam antibiotic prophylaxis is superior to bacteriostatic alternatives in immediate expanderâ€based breast reconstruction. Journal of Surgical Oncology, 2021, 124, 722-730.	1.7	2
162	Partial Tendon Injury at the Tendon-to-Bone Enthesis Activates Skeletal Stem Cells. Stem Cells Translational Medicine, 2022, 11, 715-726.	3.3	2

#	Article	IF	CITATIONS
163	Topical Lineage-Negative Progenitor-Cell Therapy for Diabetic Wounds (Invited Discussion). Plastic and Reconstructive Surgery, 2009, 123, 421-423.	1.4	1
164	Reply. Plastic and Reconstructive Surgery, 2014, 134, 664e-666e.	1.4	1
165	Clinical Management of Wound Healing and Hypertrophic Scarring. , 2016, , 61-81.		1
166	Discussion: Recipient-Site Preconditioning with Deferoxamine Increases Fat-Graft Survival by Inducing VEGF and Neovascularization in a Rat Model. Plastic and Reconstructive Surgery, 2019, 144, 630e-631e.	1.4	1
167	Therapeutic Breast Reconstruction Using Gene Therapy–Delivered IFNγ Immunotherapy. Molecular Cancer Therapeutics, 2020, 19, 697-705.	4.1	1
168	A rare case of Wohlfahrtiimonas chitiniclastica infection in California. JAAD Case Reports, 2021, 17, 55-57.	0.8	1
169	Epidermal-Derived Hedgehog Signaling Drives Mesenchymal Proliferation during Digit Tip Regeneration. Journal of Clinical Medicine, 2021, 10, 4261.	2.4	1
170	Proceed with Caution: Mouse Deep Digit Flexor Tendon Injury Model. Plastic and Reconstructive Surgery - Global Open, 2021, 9, e3359.	0.6	1
171	Bench to Bedside: Navigating Industry, the FDA and Venture Capital. , 2010, , 253-268.		1
172	Healing Rates in a Multicenter Assessment of a Sterile, Room Temperature, Acellular Dermal Matrix Versus Conventional Care Wound Management and an Active Comparator in the Treatment of Full-Thickness Diabetic Foot Ulcers. Eplasty, 2016, 16, e27.	0.4	1
173	Selective Microvascular Tissue Transfection Using Minicircle DNA for Systemic Delivery of Human Coagulation Factor IX in a Rat Model Using a Therapeutic Flap. Plastic and Reconstructive Surgery, 2021, Publish Ahead of Print, .	1.4	1
174	The evolving role of avotermin in scar prevention. Expert Review of Dermatology, 2011, 6, 149-152.	0.3	0
175	In Reply. Stem Cells, 2019, 37, E2-E2.	3.2	Ο
176	Therapeutic Interventions to Reduce Radiation Induced Dermal Injury in a Murine Model of Tissue Expander Based Breast Reconstruction. Annals of Plastic Surgery, 2020, 85, 546-552.	0.9	0
177	ASO Visual Abstract: Two-Stage Versus One-Stage Nipple-Sparing Mastectomy: Timing of Surgery Prevents Nipple Loss. Annals of Surgical Oncology, 2021, 28, 653-654.	1.5	Ο
178	Publishing in Plastic Surgery. , 2010, , 259-276.		0
179	Discussion: Overcoming the Patent Gap: A Guide to Patenting for Plastic Surgeons. Plastic and Reconstructive Surgery, 2021, 148, 918-919.	1.4	0
180	Wound care research sponsored by the Department of Defense. Wound Repair and Regeneration, 2022, , .	3.0	0

#	ARTICLE	IF	CITATIONS
181	Combining Breast and Ovarian Operations Increases Complications. Plastic and Reconstructive Surgery, 2022, 149, 1050-1059.	1.4	Ο