Jon P Camden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5353068/publications.pdf

Version: 2024-02-01

98 papers 4,924 citations

34 h-index 95266 68 g-index

103 all docs

103 docs citations

103 times ranked 6185 citing authors

#	Article	IF	CITATIONS
1	Vibrational <scp>twoâ€photon</scp> microscopy for tissue imaging: <scp>Shortâ€wave</scp> infrared <scp>surfaceâ€enhanced</scp> resonance <scp>hyperâ€Raman</scp> scattering. Journal of Biophotonics, 2022, 15, e202100158.	2.3	5
2	Enzyme Sensing Using 2-Mercaptopyridine-Carbonitrile Reporters and Surface-Enhanced Raman Scattering. ACS Omega, 2022, 7, 6419-6426.	3.5	1
3	<i>N</i> -Heterocyclic Carbene Ligand Stability on Gold Nanoparticles in Biological Media. ACS Omega, 2022, 7, 1444-1451.	3.5	13
4	Plasmonic Gold Trimers and Dimers with Air-Filled Nanogaps. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28186-28198.	8.0	11
5	Surface-enhanced hyper-Raman scattering of Rhodamine 6G isotopologues: Assignment of lower vibrational frequencies. Journal of Chemical Physics, 2021, 154, 034703.	3.0	2
6	Imidazolinium <i>N</i> -Heterocyclic Carbene Ligands for Enhanced Stability on Gold Surfaces. Langmuir, 2021, 37, 5864-5871.	3.5	18
7	Stabilization of Plasmonic Silver Nanostructures with Ultrathin Oxide Coatings Formed Using Atomic Layer Deposition. Journal of Physical Chemistry C, 2021, 125, 17212-17220. Probing nanoparticle substrate interactions with synchrotron infrared nanospectroscopy: Coupling	3.1	10
8	gold nanorod Fabry-PÃ@rot resonances with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SiO</mml:mi><mml:mn>2<mml:mi>h</mml:mi><mml:mtext>â^'</mml:mtext><mml:mtext></mml:mtext></mml:mn></mml:msub></mml:math>	0.2	J
9	phonons. Physical Review B, 2021, 104, . Spectroscopy and microscopy of plasmonic systems. Journal of Chemical Physics, 2021, 155, 090401.	3.0	1
10	Probing N-Heterocyclic Carbene Surfaces with Laser Desorption Ionization Mass Spectrometry. Analytical Chemistry, 2021, 93, 13534-13538.	6.5	7
11	Imaging Infrared Plasmon Hybridization in Doped Semiconductor Nanocrystal Dimers. Journal of Physical Chemistry Letters, 2021, 12, 10270-10276.	4.6	5
12	A surface-enhanced Raman spectroscopy database of 63 metabolites. Talanta, 2020, 210, 120645.	5.5	13
13	Database of free solution mobilities for 276 metabolites. Talanta, 2020, 209, 120545.	5.5	8
14	Plasmon Hybridization in Nanorhombus Assemblies. Journal of Physical Chemistry C, 2020, 124, 27009-27016.	3.1	3
15	Large-area periodic arrays of gold nanostars derived from HEPES-, DMF-, and ascorbic-acid-driven syntheses. Nanoscale, 2020, 12, 16489-16500.	5.6	23
16	Electron Beam Infrared Nano-Ellipsometry of Individual Indium Tin Oxide Nanocrystals. Nano Letters, 2020, 20, 7987-7994.	9.1	7
17	Capture of Phenylalanine and Phenylalanine-Terminated Peptides Using a Supramolecular Macrocycle for Surface-Enhanced Raman Scattering Detection. Applied Spectroscopy, 2020, 74, 1374-1383.	2.2	1
18	A Benchtop Method for Appending Protic Functional Groups to Nâ€Heterocyclic Carbene Protected Gold Nanoparticles. Angewandte Chemie, 2020, 132, 7655-7660.	2.0	9

#	Article	IF	Citations
19	Infrared plasmonics: STEM-EELS characterization of Fabry-Pérot resonance damping in gold nanowires. Physical Review B, 2020, 101, .	3.2	18
20	A Benchtop Method for Appending Protic Functional Groups to Nâ€Heterocyclic Carbene Protected Gold Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 7585-7590.	13.8	31
21	Far-field midinfrared superresolution imaging and spectroscopy of single high aspect ratio gold nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2288-2293.	7.1	28
22	Direct Observation of Infrared Plasmonic Fano Antiresonances by a Nanoscale Electron Probe. Physical Review Letters, 2019, 123, 177401.	7.8	25
23	Continuous Wave Resonant Photon Stimulated Electron Energy-Gain and Electron Energy-Loss Spectroscopy of Individual Plasmonic Nanoparticles. ACS Photonics, 2019, 6, 2499-2508.	6.6	25
24	$\langle i \rangle N \langle i \rangle$ -Heterocyclic Carbenes as a Robust Platform for Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2018, 140, 1247-1250.	13.7	45
25	Multipolar Nanocube Plasmon Mode-Mixing in Finite Substrates. Journal of Physical Chemistry Letters, 2018, 9, 504-512.	4.6	19
26	In Situ Probing of Laser Annealing of Plasmonic Substrates with Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 11031-11037.	3.1	7
27	SERS Sensors: Recent Developments and a Generalized Classification Scheme Based on the Signal Origin. Annual Review of Analytical Chemistry, 2018, 11, 147-169.	5.4	64
28	Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy. Chemical Reviews, 2018, 118, 2994-3031.	47.7	112
29	Structural Analysis of the Complexation of Uranyl, Neptunyl, Plutonyl, and Americyl with Cyclic Imide Dioximes. ACS Omega, 2018, 3, 13984-13993.	3.5	16
30	Exploring Photothermal Pathways via in Situ Laser Heating in the Transmission Electron Microscope: Recrystallization, Grain Growth, Phase Separation, and Dewetting in Ag0.5Ni0.5 Thin Films. Microscopy and Microanalysis, 2018, 24, 647-656.	0.4	21
31	Combinatorial Thin Film Sputtering Au _{<i>x</i>} Al _{1â€"<i>x</i>} Alloys: Correlating Composition and Structure with Optical Properties. ACS Combinatorial Science, 2018, 20, 633-642.	3.8	13
32	Non-Condon Effects in the Resonance Hyper-Raman Scattering of Chalcogen-Substituted Rhodamine Derivatives. Journal of Physical Chemistry C, 2018, 122, 25051-25058.	3.1	2
33	Using SERS To Understand the Binding of N-Heterocyclic Carbenes to Gold Surfaces. Journal of Physical Chemistry Letters, 2018, 9, 6779-6785.	4.6	38
34	Identification of substandard and falsified antimalarial pharmaceuticals chloroquine, doxycycline, and primaquine using surface-enhanced Raman scattering. Analytical Methods, 2018, 10, 4718-4722.	2.7	17
35	Utilizing Molecular Hyperpolarizability for Trace Analysis: A Surface-Enhanced Hyper-Raman Scattering Study of Uranyl Ion. ACS Omega, 2018, 3, 6660-6664.	3.5	12
36	Surface-enhanced Raman scattering of uranyl in aqueous samples: implications for nuclear forensics and groundwater testing. Analytical Methods, 2017, 9, 1575-1579.	2.7	14

#	Article	IF	Citations
37	Surface-Enhanced Resonance Hyper-Raman Scattering Elucidates the Molecular Orientation of Rhodamine 6G on Silver Colloids. Journal of Physical Chemistry Letters, 2017, 8, 1819-1823.	4.6	30
38	Utilizing light-triggered plasmon-driven catalysis reactions as a template for molecular delivery and release. Chemical Science, 2017, 8, 5902-5908.	7.4	12
39	STEM/EELS Imaging of Magnetic Hybridization in Symmetric and Symmetry-Broken Plasmon Oligomer Dimers and All-Magnetic Fano Interference. Nano Letters, 2016, 16, 6668-6676.	9.1	24
40	Nanoporous Silver Film Fabricated by Oxygen Plasma: A Facile Approach for SERS Substrates. ACS Applied Materials & Samp; Interfaces, 2016, 8, 23978-23984.	8.0	50
41	Imaging Energy Transfer in Pt-Decorated Au Nanoprisms via Electron Energy-Loss Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 3825-3832.	4.6	30
42	Characterizing Localized Surface Plasmons Using Electron Energy-Loss Spectroscopy. Annual Review of Physical Chemistry, 2016, 67, 331-357.	10.8	55
43	Imaging Plasmon Hybridization in Metal Nanoparticle Aggregates with Electron Energy-Loss Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 20852-20859.	3.1	25
44	Probing Two-Photon Molecular Properties with Surface-Enhanced Hyper-Raman Scattering: A Combined Experimental and Theoretical Study of Crystal Violet. Journal of Physical Chemistry C, 2016, 120, 20936-20942.	3.1	13
45	Sensing Glucose in Urine and Serum and Hydrogen Peroxide in Living Cells by Use of a Novel Boronate Nanoprobe Based on Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2016, 88, 7191-7197.	6.5	117
46	Electron Energy Loss Spectroscopy Study of the Full Plasmonic Spectrum of Self-Assembled Au–Ag Alloy Nanoparticles: Unraveling Size, Composition, and Substrate Effects. ACS Photonics, 2016, 3, 130-138.	6.6	32
47	Nanoscopic imaging of energy transfer from single plasmonic particles to semiconductor substrates via STEM/EELS. Microscopy and Microanalysis, 2015, 21, 1909-1910.	0.4	0
48	Surface-Enhanced Raman Spectroscopy-Based Approach for Ultrasensitive and Selective Detection of Hydrazine. Analytical Chemistry, 2015, 87, 6460-6464.	6.5	134
49	Examining Substrate-Induced Plasmon Mode Splitting and Localization in Truncated Silver Nanospheres with Electron Energy Loss Spectroscopy. Journal of Physical Chemistry Letters, 2015, 6, 2569-2576.	4.6	29
50	Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS. Nano Letters, 2015, 15, 3465-3471.	9.1	77
51	Surface-Enhanced Spectroscopy for Higher-Order Light Scattering: A Combined Experimental and Theoretical Study of Second Hyper-Raman Scattering. Journal of Physical Chemistry Letters, 2015, 6, 5067-5071.	4.6	19
52	Plasmonics for Surface Enhanced Raman Scattering: Nanoantennas for Single Molecules. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 152-162.	2.9	48
53	A nonlinear approach to surface-enhanced sensing in the short-wave infrared. Chemical Communications, 2014, 50, 1472-1474.	4.1	12
54	Resonance-Rayleigh Scattering and Electron Energy-Loss Spectroscopy of Silver Nanocubes. Journal of Physical Chemistry C, 2014, 118, 10254-10262.	3.1	15

#	Article	IF	Citations
55	The synthesis and spectroscopic characterization of an aromatic uranium amidoxime complex. Inorganica Chimica Acta, 2014, 421, 374-379.	2.4	20
56	Surface-Enhanced Hyper-Raman Scattering from Single Molecules. Journal of Physical Chemistry Letters, 2013, 4, 3420-3423.	4.6	30
57	Investigation of Linear and Nonlinear Raman Scattering for Isotopologues of Ru(bpy) ₃ ²⁺ . Journal of Physical Chemistry C, 2013, 117, 20855-20866.	3.1	17
58	Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations. Journal of Physical Chemistry Letters, 2013, 4, 1070-1078.	4.6	23
59	Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy. Scientific Reports, 2013, 3, 2867.	3.3	69
60	Directional Raman Scattering from Single Molecules in the Feed Gaps of Optical Antennas. Nano Letters, 2013, 13, 2194-2198.	9.1	104
61	Signatures of Fano Interferences in the Electron Energy Loss Spectroscopy and Cathodoluminescence of Symmetry-Broken Nanorod Dimers. ACS Nano, 2013, 7, 4511-4519.	14.6	60
62	Surface-Enhanced Hyper-Raman Scattering Elucidates the Two-Photon Absorption Spectrum of Rhodamine 6G. Journal of Physical Chemistry C, 2013, 117, 3046-3054.	3.1	35
63	O(³ <i>P</i>) + CO ₂ Collisions at Hyperthermal Energies: Dynamics of Nonreactive Scattering, Oxygen Isotope Exchange, and Oxygen-Atom Abstraction. Journal of Physical Chemistry A, 2012, 116, 64-84.	2.5	19
64	Single-Molecule Surface-Enhanced Raman Scattering: Can STEM/EELS Image Electromagnetic Hot Spots?. Journal of Physical Chemistry Letters, 2012, 3, 2303-2309.	4.6	62
65	Characterization of the Electron- and Photon-Driven Plasmonic Excitations of Metal Nanorods. ACS Nano, 2012, 6, 7497-7504.	14.6	114
66	Correlated Optical Measurements and Plasmon Mapping of Silver Nanorods. Nano Letters, 2011, 11, 3482-3488.	9.1	125
67	Spatial, Spectral, and Coherence Mapping of Single-Molecule SERS Active Hot Spots via the Discrete-Dipole Approximation. Journal of Physical Chemistry Letters, 2011, 2, 1695-1700.	4.6	34
68	Probing Two-Photon Properties of Molecules: Large Non-Condon Effects Dominate the Resonance Hyper-Raman Scattering of Rhodamine 6G. Journal of the American Chemical Society, 2011, 133, 14590-14592.	13.7	40
69	Probing Oneâ€Photon Inaccessible Electronic States with High Sensitivity: Wavelength Scanned Surface Enhanced Hyperâ€Raman Scattering. ChemPhysChem, 2011, 12, 101-103.	2.1	23
70	Crossed-Beams and Theoretical Studies of Hyperthermal Reactions of O([sup 3]P) with HCl and H[sub 2]O., 2011,,.		0
71	Surface Enhanced Hyper Raman Spectroscopy (SEHRS). , 2010, , .		0
72	Imaging Plasmon Modes in Metallic Nanostructures with Correlated Optical and Electron Microscopy. , $2010, , .$		0

#	Article	IF	CITATIONS
73	Crossed-Beams and Theoretical Studies of Hyperthermal Reactions of O(3P) with HCl. Journal of Physical Chemistry A, 2010, 114, 4905-4916.	2.5	8
74	The Role of Excited Electronic States in Hypervelocity Collisions: Enhancement of the O(³ P) + HCl â†' OCl + H Reaction Channel. Journal of Physical Chemistry Letters, 2010, 1, 2940-2945.	4.6	9
75	A method to correlate optical properties and structures of metallic nanoparticles. Ultramicroscopy, 2009, 109, 1110-1113.	1.9	35
76	Surface-Enhanced Raman Spectroscopy of Benzenethiol Adsorbed from the Gas Phase onto Silver Film over Nanosphere Surfaces: Determination of the Sticking Probability and Detection Limit Time. Journal of Physical Chemistry A, 2009, 113, 4581-4586.	2.5	141
77	Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G Molecule. Journal of the American Chemical Society, 2009, 131, 849-854.	13.7	294
78	Application of Interpolating Moving Least Squares Fitting to Hypervelocity Collision Dynamics: O(³ <i>P</i>) + HCl. Journal of Physical Chemistry A, 2009, 113, 4626-4630.	2.5	11
79	Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots. Journal of the American Chemical Society, 2008, 130, 12616-12617.	13.7	825
80	Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing. Accounts of Chemical Research, 2008, 41, 1653-1661.	15.6	683
81	Unusual Mechanisms Can Dominate Reactions at Hyperthermal Energies: An Example from O(³ <i>P</i>) + HCl → ClO + H. Journal of the American Chemical Society, 2008, 130, 8896-8897.	13.7	15
82	Crossed-Beams and Theoretical Studies of the O($\langle \sup \rangle 3 \langle \sup \rangle P$) + H $\langle \sup \rangle 2 \langle \sup \rangle O$ â†' HO $\langle \sup \rangle 2 \langle \sup \rangle +$ H Reaction Excitation Function. Journal of Physical Chemistry A, 2007, 111, 10907-10913.	2.5	29
83	Direct Dynamics Simulations of O(3P) + HCl at Hyperthermal Collision Energies. Journal of Physical Chemistry A, 2006, 110, 13681-13685.	2.5	14
84	H + CD4 Abstraction Reaction Dynamics:  Product Energy Partitioning. Journal of Physical Chemistry A, 2006, 110, 3017-3027.	2.5	54
85	H + CD4Abstraction Reaction Dynamics: Excitation Function and Angular Distributionsâ€. Journal of Physical Chemistry A, 2006, 110, 677-686.	2.5	52
86	Comparing reactions of H and Cl with C–H stretch-excited CHD3. Journal of Chemical Physics, 2006, 124, 034311.	3.0	54
87	Effects of Bending Excitation on the Reaction of Chlorine Atoms with Methane. Angewandte Chemie - International Edition, 2005, 44, 2382-2385.	13.8	51
88	Effects of Câ€"H stretch excitation on the H+CH4 reaction. Journal of Chemical Physics, 2005, 123, 134301.	3.0	67
89	Correlated energy disposal and scattering dynamics of the Cl CD4($\hat{l}/23$ = 2) reaction. Molecular Physics, 2005, 103, 1837-1846.	1.7	15
90	Effect of bending and torsional mode excitation on the reaction Cl+CH4â†'HCl+CH3. Journal of Chemical Physics, 2005, 122, 084303.	3.0	37

#	Article	IF	CITATION
91	A Reinterpretation of the Mechanism of the Simplest Reaction at an sp3-Hybridized Carbon Atom:  H + CD4 → CD3 + HD. Journal of the American Chemical Society, 2005, 127, 11898-11899.	13.7	67
92	Reaction Products with Internal Energy beyond the Kinematic Limit Result from Trajectories Far from the Minimum Energy Path: An Example from H + HBr → H2+ Br. Journal of the American Chemical Society, 2005, 127, 16368-16369.	13.7	90
93	Comparing the dynamical effects of symmetric and antisymmetric stretch excitation of methane in the Cl+CH4 reaction. Journal of Chemical Physics, 2004, 120, 5096-5103.	3.0	77
94	Bond and mode selectivity in the reaction of atomic chlorine with vibrationally excited CH2D2. Journal of Chemical Physics, 2004, 120, 791-799.	3.0	68
95	State-to-state dynamics of the Cl+CH3OHâ†'HCl+CH2OH reaction. Journal of Chemical Physics, 2004, 120, 4231-4239.	3.0	14
96	Design and characterization of a late-mixing pulsed nozzle. Review of Scientific Instruments, 2004, 75, 556-558.	1.3	8
97	Probing Excited Electronic States Using Vibrationally Mediated Photolysis: Application to Hydrogen Iodideâ€. Journal of Physical Chemistry A, 2004, 108, 7806-7813.	2.5	21
98	Dynamics of the Simplest Reaction of a Carbon Atom in a Tetrahedral Environment. Angewandte Chemie - International Edition, 2003, 42, 5227-5230.	13.8	39