Dipan J Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5353051/publications.pdf

Version: 2024-02-01

		279798	9	8798
84	4,794	23		67
papers	citations	h-index		g-index
84	84	84		5743
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Left ventricular mass on positron emission tomography: Validation against cardiovascular magnetic resonance. Journal of Nuclear Cardiology, 2022, 29, 1632-1642.	2.1	5
2	Endovascular Porcine Model of Iliocaval Venous Thrombosis. European Journal of Vascular and Endovascular Surgery, 2022, 63, 623-630.	1.5	7
3	Myocardial Contractile Mechanics in Ischemic Mitral Regurgitation. JACC: Cardiovascular Imaging, 2022, , .	5. 3	2
4	Inflammatory Cardiomyopathies. JACC: Case Reports, 2022, 4, 632-638.	0.6	0
5	Differences in Cardiac Remodeling in Left-Sided Valvular Regurgitation. JACC: Cardiovascular Imaging, 2022, 15, 1730-1741.	5. 3	12
6	The Role of Cardiac Magnetic Resonance in Valvular Heart Disease. Methodist DeBakey Cardiovascular Journal, 2021, 9, 142.	1.0	37
7	Important Advances in Technology and Unique Applications Related to Cardiac Magnetic Resonance Imaging. Methodist DeBakey Cardiovascular Journal, 2021, 10, 159.	1.0	3
8	Magnetic Resonance Imaging of a Scimitar Vein and Aortic Dissection. Methodist DeBakey Cardiovascular Journal, 2021, 10, 257.	1.0	3
9	Contained Rupture of Ventricular Wall and Ventricular Septal Defect in the Same Patient Following Myocardial Infarction. Methodist DeBakey Cardiovascular Journal, 2021, 12, 122.	1.0	1
10	A positive PYP scan: Thinking beyond amyloid. Journal of Nuclear Cardiology, 2021, 28, 1796-1797.	2.1	1
11	Relation of Magnetic Resonance Imaging Based Arterial Signal Enhancement to Markers of Peripheral Artery Disease. American Journal of Cardiology, 2021, 140, 140-147.	1.6	4
12	A modular and scalable computational framework for interactive immersion into imaging data with a holographic augmented reality interface. Computer Methods and Programs in Biomedicine, 2021, 198, 105779.	4.7	9
13	Resolving the Disproportionate Left Ventricular Enlargement in Mitral Valve Prolapse Due to Barlow Disease. JACC: Cardiovascular Imaging, 2021, 14, 573-584.	5. 3	25
14	One Hundred Percent Reparability of Mitral Prolapse: Results of a Dynamic Nonresectional Technique. Annals of Thoracic Surgery, 2021, 112, 1921-1928.	1.3	10
15	Hemodynamic determinants of left atrial strain in patients with hypertrophic cardiomyopathy: A combined echocardiography and CMR study. PLoS ONE, 2021, 16, e0245934.	2.5	12
16	Cardiac Imaging for Risk Assessment of Malignant Ventricular Arrhythmias in Patients With Mitral Valve Prolapse. Frontiers in Cardiovascular Medicine, 2021, 8, 574446.	2.4	5
17	4D Flow CMR. JACC: Cardiovascular Imaging, 2021, 14, 1367-1368.	5.3	2
18	Impact of Myocardial Scar on Prognostic Implication of Secondary Mitral Regurgitation in HeartÂFailure. JACC: Cardiovascular Imaging, 2021, 14, 812-822.	5.3	10

#	Article	IF	CITATIONS
19	Relationship of LVEF and Myocardial Scar to Long-Term Mortality Risk and Mode of Death in Patients With Nonischemic Cardiomyopathy. Circulation, 2021, 143, 1343-1358.	1.6	64
20	Extracellular Volume in Primary Mitral Regurgitation. JACC: Cardiovascular Imaging, 2021, 14, 1146-1160.	5.3	30
21	Regional Replacement and DiffuseÂInterstitial Fibrosis in AorticÂRegurgitation. JACC: Cardiovascular Imaging, 2021, 14, 2170-2182.	5.3	24
22	Assessment of the tricuspid valve using cardiovascular magnetic resonance. Current Opinion in Cardiology, 2021, 36, 505-512.	1.8	1
23	Cardiovascular magnetic resonance imaging in suspected cardiac tumour: a multicentre outcomes study. European Heart Journal, 2021, 43, 71-80.	2.2	27
24	Incessant PVCs and Cardiomyopathy: Think Outside the Box. Methodist DeBakey Cardiovascular Journal, 2021, $16, 1$.	1.0	0
25	The Authors' Reply. JACC: Cardiovascular Imaging, 2021, 14, 2271.	5.3	0
26	Cardiac Magnetic Resonance in Nonischemic Cardiomyopathies. Methodist DeBakey Cardiovascular Journal, 2021, 16, 97.	1.0	3
27	Cardiovascular Imaging: A Window into Diagnostic and Therapeutic Management. Methodist DeBakey Cardiovascular Journal, 2021, 16, 75.	1.0	0
28	Acute and Subclinical Myocardial Injury in COVID-19. Methodist DeBakey Cardiovascular Journal, 2021, 17, 22-30.	1.0	6
29	Abstract 11227: Ischemia Mediated Contractile Dysfunction Modulates Functional Mitral Regurgitation - Multiparametric Strain and Tissue Characterization Data from the Society of Cardiovascular Magnetic Resonance (scmr) Registry. Circulation, 2021, 144, .	1.6	0
30	Not All Flails Are Created Equal. Journal of the American College of Cardiology, 2021, 78, 2547-2549.	2.8	0
31	CMR in the Evaluation of Diastolic Dysfunction and Phenotyping of HFpEF. JACC: Cardiovascular Imaging, 2020, 13, 283-296.	5.3	80
32	Positrons, protons, and pulse waves: Multimodality characterization of newly diagnosed hypertrophic cardiomyopathy. Journal of Nuclear Cardiology, 2020, 27, 2412-2416.	2.1	1
33	Echocardiography First, But Here Comes CMR for Grading LeftÂVentricular Diastolic Function. JACC: Cardiovascular Imaging, 2020, 13, 2543-2545.	5.3	3
34	Examining the Relationship and Prognostic Implication of Diabetic Status and Extracellular Matrix Expansion by Cardiac Magnetic Resonance. Circulation: Cardiovascular Imaging, 2020, 13, e011000.	2.6	19
35	Myocardial Scar and Mortality in Chronic Aortic Regurgitation. Journal of the American Heart Association, 2020, 9, e018731.	3.7	18
36	Structure Predicts (Dys)Function. JACC: Cardiovascular Imaging, 2020, 13, 1701-1703.	5.3	3

#	Article	IF	CITATIONS
37	Functional assessment of bioprosthetic mitral valves by cardiovascular magnetic resonance: An in vitro validation and comparison to Doppler echocardiography. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 55.	3.3	1
38	Examining the impact of inducible ischemia on myocardial fibrosis and exercise capacity in hypertrophic cardiomyopathy. Scientific Reports, 2020, 10, 15977.	3.3	4
39	Natural History of Functional TricuspidÂRegurgitation Quantified by Cardiovascular Magnetic Resonance. Journal of the American College of Cardiology, 2020, 76, 1291-1301.	2.8	56
40	Comparison of Echocardiographic Assessment of Tricuspid Regurgitation Against Cardiovascular Magnetic Resonance. JACC: Cardiovascular Imaging, 2020, 13, 1461-1471.	5.3	31
41	Usefulness of Mitral Regurgitant Volume Quantified Using Magnetic Resonance Imaging to Predict Left Ventricular Remodeling After Mitral Valve "Correction― American Journal of Cardiology, 2020, 125, 1666-1672.	1.6	8
42	Cardiac Magnetic Resonance in Valvular Heart Disease: Assessment of Severity and Myocardial Remodeling. Methodist DeBakey Cardiovascular Journal, 2020, 16, 106-113.	1.0	2
43	Magnetic resonance imaging based modeling of microvascular perfusion in patients with peripheral artery disease. Journal of Biomechanics, 2019, 93, 147-158.	2.1	8
44	Normal Reference Values and Reproducibility of Tricuspid Annulus Dimensions Using Cardiovascular Magnetic Resonance. American Journal of Cardiology, 2019, 124, 594-598.	1.6	13
45	Multimodality Imaging of the Tricuspid Valve and Right Heart Anatomy. JACC: Cardiovascular Imaging, 2019, 12, 516-531.	5.3	77
46	Functionalization of endovascular devices with superparamagnetic iron oxide nanoparticles for interventional cardiovascular magnetic resonance imaging. Biomedical Microdevices, 2019, 21, 38.	2.8	4
47	Prognostic Value of Vasodilator Stress Cardiac Magnetic Resonance Imaging. JAMA Cardiology, 2019, 4, 256.	6.1	88
48	Relationship of extracellular volume assessed on cardiac magnetic resonance and serum cardiac troponins and natriuretic peptides with heart failure outcomes. Scientific Reports, 2019, 9, 20168.	3.3	10
49	Myocardial Extracellular Volume Fraction Adds Prognostic Information Beyond Myocardial Replacement Fibrosis. Circulation: Cardiovascular Imaging, 2019, 12, e009535.	2.6	56
50	Unconventional Path to Healing. JACC: Case Reports, 2019, 1, 638-642.	0.6	1
51	Prognostic Implications of Diffuse Interstitial Fibrosis in Asymptomatic Primary Mitral Regurgitation. Circulation, 2019, 140, 2122-2124.	1.6	23
52	Differentiating benign from malignant cardiac tumors with cardiac magnetic resonance imaging. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 1912-1922.e2.	0.8	49
53	Association of left atrial volume index and all-cause mortality in patients referred for routine cardiovascular magnetic resonance: a multicenter study. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 4.	3.3	59
54	Feature-Tracking Global Longitudinal Strain Predicts Death in a Multicenter Population of Patients With Ischemic and Nonischemic Dilated Cardiomyopathy Incremental to Ejection Fraction and LateÂGadolinium Enhancement. JACC: Cardiovascular Imaging, 2018, 11, 1419-1429.	5.3	192

#	Article	IF	CITATIONS
55	Patient-specific flow descriptors and normalised wall index in peripheral artery disease: a preliminary study. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6, 119-127.	1.9	9
56	Left ventricular function in patients with hypertrophic cardiomyopathy and its relation to myocardial fibrosis and exercise tolerance. International Journal of Cardiovascular Imaging, 2018, 34, 121-129.	1,5	21
57	Appropriateness of anteroseptal myocardial infarction nomenclature evaluated by late gadolinium enhancement cardiovascular magnetic resonance imaging. Journal of Electrocardiology, 2018, 51, 218-223.	0.9	2
58	Myocardial Fibrosis in Patients With Primary Mitral Regurgitation With andÂWithout Prolapse. Journal of the American College of Cardiology, 2018, 72, 823-834.	2.8	169
59	Imaging to Diagnose and Manage Patients in Heart Failure With Reduced Ejection Fraction. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	10
60	Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation. Journal of the American Society of Echocardiography, 2017, 30, 303-371.	2.8	2,269
61	Feasibility of three-dimensional magnetic resonance angiography-fluoroscopy image fusion technique in guiding complex endovascular aortic procedures in patients with renal insufficiency. Journal of Vascular Surgery, 2017, 65, 1440-1452.	1.1	13
62	Cardiac Imaging in Patients With Heart Failure and Preserved Ejection Fraction. Circulation: Cardiovascular Imaging, 2017, 10 , .	2.6	24
63	Temporal Relation Between Myocardial Fibrosis and Heart Failure With Preserved Ejection Fraction. JAMA Cardiology, 2017, 2, 995.	6.1	164
64	Magnetic resonance venography and three-dimensional image fusion guidance provide a novel paradigm for endovascular recanalization of chronic central venous occlusion. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2017, 5, 60-69.	1.6	5
65	The Authors Reply:. JACC: Cardiovascular Imaging, 2016, 9, 1476.	5. 3	0
66	Hypertrophic Cardiomyopathy with Unusual Extensive Scarring Pattern: Danon Disease. Methodist DeBakey Cardiovascular Journal, 2016, 12, 227-229.	1.0	5
67	Vortex Formation Time Index in Patients WithÂHypertrophic Cardiomyopathy. JACC: Cardiovascular Imaging, 2016, 9, 1229-1231.	5. 3	13
68	Detection of LA and LAA Thrombus byÂCMR in Patients Referred for PulmonaryÂVein Isolation. JACC: Cardiovascular Imaging, 2016, 9, 809-818.	5. 3	54
69	Calf muscle perfusion as measured with magnetic resonance imaging to assess peripheral arterial disease. Medical and Biological Engineering and Computing, 2016, 54, 1667-1681.	2.8	14
70	Comparative Assessment of Mitral Regurgitation Severity by Transthoracic Echocardiography and Cardiac Magnetic Resonance Using an Integrative and Quantitative Approach. American Journal of Cardiology, 2016, 117, 264-270.	1.6	51
71	One Hundred Percent Reparability of Degenerative Mitral Regurgitation: Intermediate-Term Results of a Dynamic Engineered Approach. Annals of Thoracic Surgery, 2016, 101, 576-584.	1.3	20
72	Magnetic resonance imaging-based computational modelling of blood flow and nanomedicine deposition in patients with peripheral arterial disease. Journal of the Royal Society Interface, 2015, 12, 20150001.	3.4	27

#	Article	IF	CITATIONS
73	Ruptured Sinus of Valsalva Aneurysm with an Odd Presentation. Methodist DeBakey Cardiovascular Journal, 2014, 10, 129-129.	1.0	O
74	Prognostic Value of Delayed Enhancement Cardiac Magnetic Resonance Imaging in Mitral Valve Repair. Annals of Thoracic Surgery, 2014, 98, 1557-1563.	1.3	23
75	Prevalence of Regional Myocardial Thinning and Relationship With Myocardial Scarring in Patients With Coronary Artery Disease. JAMA - Journal of the American Medical Association, 2013, 309, 909.	7.4	104
76	A Framework for Integrating Real-Time MRI With Robot Control: Application to Simulated Transapical Cardiac Interventions. IEEE Transactions on Biomedical Engineering, 2013, 60, 1023-1033.	4.2	17
77	Validation of subâ€segmental visual scoring for the quantification of ischemic and nonischemic myocardial fibrosis using late gadolinium enhancement MRI. Journal of Magnetic Resonance Imaging, 2013, 38, 1369-1376.	3.4	32
78	Introduction: Cardiovascular magnetic resonance. Methodist DeBakey Cardiovascular Journal, 2013, 9, 122.	1.0	0
79	Cardiac magnetic resonance for mitral regurgitation diagnosis. Current Opinion in Cardiology, 2012, 27, 485-491.	1.8	3
80	Visual and force-feedback guidance for robot-assisted interventions in the beating heart with real-time MRI. , $2012, \ldots$		30
81	Extracting geometric features of aortic valve annulus motion from dynamic MRI for guiding interventions., 2011,,.		3
82	Detection of Left Ventricular Thrombus by Delayed-Enhancement Cardiovascular Magnetic Resonance. Journal of the American College of Cardiology, 2008, 52, 148-157.	2.8	271
83	Technology Insight: MRI of the myocardium. Nature Clinical Practice Cardiovascular Medicine, 2005, 2, 597-605.	3.3	25
84	Gadolinium Cardiovascular Magnetic Resonance Predicts Reversible Myocardial Dysfunction and Remodeling in Patients With Heart Failure Undergoing \hat{l}^2 -Blocker Therapy. Circulation, 2003, 108, 1945-1953.	1.6	307