
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5352434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coronary CT Angiography and 5-Year Risk of Myocardial Infarction. New England Journal of Medicine, 2018, 379, 924-933.	27.0	898
2	High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study. Lancet, The, 2015, 386, 2481-2488.	13.7	422
3	Coronary Artery Plaque Characteristics Associated With Adverse Outcomes inÂthe SCOT-HEART Study. Journal of the American College of Cardiology, 2019, 73, 291-301.	2.8	367
4	Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction. Circulation, 2020, 141, 1452-1462.	1.6	348
5	High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial. Lancet, The, 2018, 392, 919-928.	13.7	263
6	Long-Term Outcomes in Patients With Type 2 Myocardial Infarction and Myocardial Injury. Circulation, 2018, 137, 1236-1245.	1.6	250
7	Assessment and classification of patients with myocardial injury and infarction in clinical practice. Heart, 2017, 103, 10-18.	2.9	205
8	Association of High-Sensitivity Cardiac Troponin I Concentration With Cardiac Outcomes in Patients With Suspected Acute Coronary Syndrome. JAMA - Journal of the American Medical Association, 2017, 318, 1913.	7.4	188
9	Comparison of the Efficacy and Safety of Early Rule-Out Pathways for Acute Myocardial Infarction. Circulation, 2017, 135, 1586-1596.	1.6	153
10	High-Sensitivity Cardiac Troponin and the Universal Definition of Myocardial Infarction. Circulation, 2020, 141, 161-171.	1.6	124
11	18F–Sodium Fluoride Uptake in AbdominalÂAortic Aneurysms. Journal of the American College of Cardiology, 2018, 71, 513-523.	2.8	122
12	Percutaneous Device Closure of Paravalvular Leak. Circulation, 2016, 134, 934-944.	1.6	109
13	Coronary 18F-Sodium Fluoride Uptake Predicts Outcomes in Patients With Coronary Artery Disease. Journal of the American College of Cardiology, 2020, 75, 3061-3074.	2.8	100
14	Guiding Therapy by Coronary CT Angiography Improves Outcomes in Patients With StableÂChest Pain. Journal of the American College of Cardiology, 2019, 74, 2058-2070.	2.8	99
15	Patient selection for high sensitivity cardiac troponin testing and diagnosis of myocardial infarction: prospective cohort study. BMJ: British Medical Journal, 2017, 359, j4788.	2.3	92
16	Association of Lipoprotein(a) With Atherosclerotic Plaque Progression. Journal of the American College of Cardiology, 2022, 79, 223-233.	2.8	66
17	Comparison of International GuidelinesÂfor Assessment of SuspectedÂStable Angina. JACC: Cardiovascular Imaging, 2018, 11, 1301-1310.	5.3	63
18	Optimization and Reproducibility of Aortic Valve 18F-Fluoride Positron Emission Tomography in Patients With Aortic Stenosis. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	61

#	Article	IF	CITATIONS
19	Effect of Denosumab or Alendronic Acid on the Progression of Aortic Stenosis: A Double-Blind Randomized Controlled Trial. Circulation, 2021, 143, 2418-2427.	1.6	61
20	Cardiac Troponin I and Cardiovascular Risk in Patients With Chronic Obstructive PulmonaryÂDisease. Journal of the American College of Cardiology, 2018, 72, 1126-1137.	2.8	48
21	Imaging of coronary atherosclerosis — evolution towards new treatment strategies. Nature Reviews Cardiology, 2016, 13, 533-548.	13.7	47
22	Pericoronary Adipose Tissue Attenuation, Low-Attenuation Plaque Burden, and 5-Year Risk of Myocardial Infarction. JACC: Cardiovascular Imaging, 2022, 15, 1078-1088.	5.3	46
23	Triple-gated motion and blood pool clearance corrections improve reproducibility of coronary 18F-NaF PET. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2610-2620.	6.4	45
24	A Comparison of the Updated Diamond-Forrester, CAD Consortium, and CONFIRM History-Based Risk Scores for Predicting Obstructive Coronary Artery Disease in Patients With StableÂChest Pain. JACC: Cardiovascular Imaging, 2019, 12, 1392-1400.	5.3	45
25	Coronary ¹⁸ F-Fluoride Uptake and Progression of Coronary Artery Calcification. Circulation: Cardiovascular Imaging, 2020, 13, e011438.	2.6	43
26	Incidence and outcomes of unstable angina compared with non-ST-elevation myocardial infarction. Heart, 2019, 105, 1423-1431.	2.9	42
27	High-Sensitivity Cardiac Troponin I and the Diagnosis of Coronary Artery Disease in Patients With Suspected Angina Pectoris. Circulation: Cardiovascular Quality and Outcomes, 2018, 11, e004227.	2.2	41
28	Diagnostic and prognostic benefits of computed tomography coronary angiography using the 2016 National Institute for Health and Care Excellence guidance within a randomised trial. Heart, 2018, 104, 207-214.	2.9	41
29	Feasibility of Coronary ¹⁸ F-Sodium Fluoride Positron-Emission Tomography Assessment With the Utilization of Previously Acquired Computed Tomography Angiography. Circulation: Cardiovascular Imaging, 2018, 11, e008325.	2.6	36
30	Molecular Coronary Plaque Imaging Using ¹⁸ F-Fluoride. Circulation: Cardiovascular Imaging, 2019, 12, e008574.	2.6	36
31	Exercise Electrocardiography and Computed Tomography Coronary Angiography for Patients With Suspected Stable Angina Pectoris. JAMA Cardiology, 2020, 5, 920.	6.1	34
32	Machine Learning with ¹⁸ F-Sodium Fluoride PET and Quantitative Plaque Analysis on CT Angiography for the Future Risk of Myocardial Infarction. Journal of Nuclear Medicine, 2022, 63, 158-165.	5.0	34
33	Non-invasive imaging of the coronary arteries. European Heart Journal, 2019, 40, 2444-2454.	2.2	32
34	Contrast-enhanced computed tomography assessment of aortic stenosis. Heart, 2021, 107, 1905-1911.	2.9	32
35	Standardized reporting systems for computed tomography coronary angiography and calcium scoring: A real-world validation of CAD-RADS and CAC-DRS in patients with stable chest pain. Journal of Cardiovascular Computed Tomography, 2020, 14, 3-11.	1.3	31
36	Validation of European Society of Cardiology pre-test probabilities for obstructive coronary artery disease in suspected stable angina. European Heart Journal Quality of Care & Clinical Outcomes, 2020, 6, 293-300.	4.0	30

#	Article	IF	CITATIONS
37	Identification of patients with stable chest pain deriving minimal value from coronary computed tomography angiography: An external validation of the PROMISE minimal-risk tool. International Journal of Cardiology, 2018, 252, 31-34.	1.7	29
38	Sex associations and computed tomography coronary angiography-guided management in patients with stable chest pain. European Heart Journal, 2020, 41, 1337-1345.	2.2	28
39	Sex-Specific Computed Tomography Coronary Plaque Characterization and Risk of Myocardial Infarction. JACC: Cardiovascular Imaging, 2021, 14, 1804-1814.	5.3	28
40	Thoracic Aortic 18F-Sodium Fluoride Activity and Ischemic Stroke in Patients With Established Cardiovascular Disease. JACC: Cardiovascular Imaging, 2022, 15, 1274-1288.	5.3	27
41	The vulnerable atherosclerotic plaque: in vivo identification and potential therapeutic avenues. Heart, 2015, 101, 1755-1766.	2.9	26
42	Ticagrelor to Reduce Myocardial Injury inÂPatients With High-Risk Coronary Artery Plaque. JACC: Cardiovascular Imaging, 2020, 13, 1549-1560.	5.3	26
43	Observer repeatability and interscan reproducibility of 18F-sodium fluoride coronary microcalcification activity. Journal of Nuclear Cardiology, 2022, 29, 126-135.	2.1	26
44	Cardiovascular 18F-fluoride positron emission tomography-magnetic resonance imaging: A comparison study. Journal of Nuclear Cardiology, 2021, 28, 1-12.	2.1	25
45	Reproducibility of quantitative plaque measurement in advanced coronary artery disease. Journal of Cardiovascular Computed Tomography, 2021, 15, 333-338.	1.3	24
46	Salt in the wound: (18)F-fluoride positron emission tomography for identification of vulnerable coronary plaques. Cardiovascular Diagnosis and Therapy, 2015, 5, 150-5.	1.7	24
47	Bypass Grafting and Native Coronary Artery Disease Activity. JACC: Cardiovascular Imaging, 2022, 15, 875-887.	5.3	24
48	The impact of a national COVID-19 lockdown on acute coronary syndrome hospitalisations in New Zealand (ANZACS-QI 55). The Lancet Regional Health - Western Pacific, 2020, 5, 100056.	2.9	23
49	Quantifying microcalcification activity in the thoracic aorta. Journal of Nuclear Cardiology, 2022, 29, 1372-1385.	2.1	21
50	Association of coronary artery calcium score with qualitatively and quantitatively assessed adverse plaque on coronary CT angiography in the SCOT-HEART trial. European Heart Journal Cardiovascular Imaging, 2022, 23, 1210-1221.	1.2	21
51	Prevalence and clinical implications of valvular calcification on coronary computed tomography angiography. European Heart Journal Cardiovascular Imaging, 2021, 22, 262-270.	1.2	19
52	Validation of the myocardial-ischaemic-injury-index machine learning algorithm to guide the diagnosis of myocardial infarction in a heterogenous population: a prespecified exploratory analysis. The Lancet Digital Health, 2022, 4, e300-e308.	12.3	18
53	Ex vivo 18F-fluoride uptake and hydroxyapatite deposition in human coronary atherosclerosis. Scientific Reports, 2020, 10, 20172.	3.3	15
54	Optical coherence tomography versus intravascular ultrasound to evaluate stent implantation in patients with calcific coronary artery disease. Open Heart, 2015, 2, e000225.	2.3	14

#	Article	IF	CITATIONS
55	Left Ventricular Thrombus After Primary PCI for ST-Elevation Myocardial Infarction: 1-Year Clinical Outcomes. American Journal of Medicine, 2019, 132, 964-969.	1.5	14
56	The SCOT-HEART Trial. What we observed and what we learned. Journal of Cardiovascular Computed Tomography, 2019, 13, 54-58.	1.3	14
57	Trends in the Detection, Management and 30-Day Outcomes of Spontaneous Coronary Artery Dissection: A Six-Year, New Zealand Centre Experience. Heart Lung and Circulation, 2021, 30, 78-85.	0.4	14
58	Preterm birth and cardiac function in adulthood. Heart, 2022, 108, 172-177.	2.9	14
59	Emergency interventions for the treatment of decompensated aortic stenosis. Heart, 2018, 104, 4-5.	2.9	12
60	Convalescent troponin and cardiovascular death following acute coronary syndrome. Heart, 2019, 105, 1717-1724.	2.9	11
61	Coronary CT Angiography and Subsequent Risk of Myocardial Infarction. New England Journal of Medicine, 2019, 380, 298-300.	27.0	10
62	Positron emission tomography imaging of coronary atherosclerosis. Future Cardiology, 2016, 12, 483-496.	1.2	9
63	Use of High-Sensitivity Cardiac Troponin in Patients With Kidney Impairment. JAMA Internal Medicine, 2021, 181, 1237.	5.1	9
64	High-sensitivity cardiac troponin and the diagnosis of myocardial infarction in patients with kidney impairment. Kidney International, 2022, 102, 149-159.	5.2	9
65	Differences in relative and absolute effectiveness of oral P2Y _{₁₂} inhibition in men and women: a meta-analysis and modelling study. Heart, 2018, 104, 657-664.	2.9	7
66	Clinical outcomes following balloon aortic valvuloplasty. Open Heart, 2020, 7, e001330.	2.3	7
67	Hepatosteatosis and Atherosclerotic Plaque at Coronary CT Angiography. Radiology: Cardiothoracic Imaging, 2022, 4, e210260.	2.5	6
68	Assessment of Oxygen Supply-Demand Imbalance and Outcomes Among Patients With Type 2 Myocardial Infarction. JAMA Network Open, 2022, 5, e2220162.	5.9	6
69	â€~See one, do one, teach one': finding your mentor in academic medicine. Future Science OA, 2019, 5, FSO385.	1.9	5
70	18F-SODIUM FLUORIDE CORONARY UPTAKE PREDICTS MYOCARDIAL INFARCTIONS IN PATIENTS WITH KNOWN CORONARY ARTERY DISEASE. Journal of the American College of Cardiology, 2020, 75, 3667.	2.8	5
71	Translational Coronary Atherosclerosis Imaging with PET. Cardiology Clinics, 2016, 34, 179-186.	2.2	4
72	Clinical determinants of plasma cardiac biomarkers in patients with stable chest pain. Heart, 2019, 105, 1748-1754.	2.9	4

#	Article	IF	CITATIONS
73	Do we need early risk stratification after ST-elevation myocardial infarction?. Heart, 2021, 107, 1852-1853.	2.9	4
74	Right Ventricular Structure and Function in Young Adults Born Preterm at Very Low Birth Weight. Journal of Clinical Medicine, 2021, 10, 4864.	2.4	3
75	High-Sensitivity Troponin and the Selection of Patients for Cardiac Imaging in the Outpatient Clinic. Clinical Chemistry, 2018, 64, 1555-1557.	3.2	2
76	Non-invasive imaging of high-risk coronary plaque: the role of computed tomography and positron emission tomography. British Journal of Radiology, 2020, 93, 20190740.	2.2	2
77	The 2020 European Society of Cardiology non-ST-segment elevation acute coronary syndromes guideline: the good, the bad and the ugly. Heart, 2021, 107, 444-446.	2.9	2
78	Measuring the Jugular Venous Pressure: Do Not Turn the Head!. American Journal of Medicine, 2022, 135, 552-554.	1.5	2
79	Cilostazol in Acute Myocardial Infarction: New Tricks for an Old Drug?. American Journal of Cardiovascular Drugs, 2014, 14, 129-130.	2.2	1
80	144â€High-sensitivity cardiac troponin and the fourth universal definition of myocardial infarction. , 2019, , .		1
81	4â€18F-sodium fluoride positron emission tomography predicts progression of coronary calcification. , 2019, , .		1
82	CT coronary angiography does not reduce mortality or myocardial infarction in low-risk patients with acute chest pain. BMJ Evidence-Based Medicine, 2019, 24, e5-e5.	3.5	1
83	Ticagrelor in the management of coronary artery disease. Future Cardiology, 2020, 17, 561-571.	1.2	1
84	Cardiac catheterisation laboratory in a global pandemic: ceding centre stage. Heart, 2020, 106, 1788-1789.	2.9	1
85	Spontaneous coronary artery dissection: to do good or to do no harm?. Heart, 2021, 107, 1362-1363.	2.9	1
86	Peri-procedural Myocardial Infarction: If You Don't Take a Temperature, You Can't Find a Fever. Revista Espanola De Cardiologia (English Ed), 2016, 69, 725-729.	0.6	0
87	Response: a novel troponin I rule-out value below the upper reference limit for acute myocardial infarction. Heart, 2016, 102, 1772-1772.	2.9	0
88	The true value of The National Institute for Health and Care Excellence guidance. Heart, 2017, 103, 1056-1056.	2.9	0
89	OPTIMAL RISK STRATIFICATION PATHWAYS FOR PATIENTS WITH SUSPECTED ACUTE CORONARY SYNDROME. Journal of the American College of Cardiology, 2017, 69, 196.	2.8	0
90	AGE AND THE EFFECTIVENESS OF RISK STRATIFICATION AND DIAGNOSTIC THRESHOLDS FOR MYOCARDIAL INFARCTION WITH HIGH-SENSITIVITY CARDIAC TROPONIN. Journal of the American College of Cardiology, 2017, 69, 239.	2.8	0

#	Article	IF	CITATIONS
91	Ex-vivo 18F-sodium fluoride micro-PET-CT in sudden cardiac death. Atherosclerosis, 2017, 263, e54-e55.	0.8	0
92	58â€Optimal risk stratification pathways for patients with suspected acute coronary syndrome. Heart, 2017, 103, A44.2-A45.	2.9	0
93	12â€Precision imaging of coronary atherosclerotic microcalcification using 18F-fluoride. , 2018, , .		0
94	18â€18F-flouride pet MR in valvular and coronary heart disease; a pilot investigational study. , 2018, , .		0
95	9â€Dual antiplatelet therapy to inhibit myocardial injury in patients with high-risk coronary artery plaque: a randomised controlled trial. , 2019, , .		0
96	LOW-DENSITY NON-CALCIFIED PLAQUE ON CORONARY CT ANGIOGRAPHY IS THE STRONGEST INDEPENDENT PREDICTOR OF FUTURE MYOCARDIAL INFARCTION. Journal of the American College of Cardiology, 2020, 75, 1.	2.8	0
97	Response to: â€~Convalescent troponin and cardiovascular death following acute coronary syndrome' by Kawada. Heart, 2020, 106, 545.2-546.	2.9	0
98	Microvascular obstruction: time to bust the clot hypothesis?. Heart, 2021, 107, 268-269.	2.9	0
99	Response by Meah et al to Letter Regarding Article, "Coronary 18 F-Fluoride Uptake and Progression of Coronary Artery Calcification― Circulation: Cardiovascular Imaging, 2021, 14, CIRCIMAGING121012514.	2.6	0
100	Consistency and Generalizability of Trials for Coronary Computed Tomography Angiography. JAMA Cardiology, 2021, 6, 483.	6.1	0
101	155â€Pericoronary adipose tissue attenuation, low attenuation plaque burden and 5-year risk of myocardial infarction. , 2021, , .		0
102	157â€18F-sodium fluoride positron emission tomography, aortic disease activity and ischaemic stroke risk. , 2021, , .		0
103	2â€Predicting abdominal aortic aneurysm growth using 18F-sodium fluoride PET-CT. , 2018, , .		0
104	9â€Vulnerable plaque detection in sudden cardiac death: post-mortem CT coronary angiography. , 2018, , .		0
105	Abstract P1-13-02: Dynamic changes in high-sensitivity cardiac troponin I in response to anthracycline-based chemotherapy-The Cardiac Care Trial pilot data. , 2020, , .		0
106	Reducing Patient Risk and Enhancing Care Through the Development and Implementation of a New Chest Pain Pathway, Expedited by and for the COVID-19 Era. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine, 2021, 32, 27-40.	0.7	0
107	How common are non-acute coronary syndrome (ACS) diagnoses in patients with suspected ACS investigated with coronary angiography in New Zealand? (ANZACS-QI 58). New Zealand Medical Journal, 2021, 134, 43-55.	0.5	0