List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/535241/publications.pdf Version: 2024-02-01

ALEY C KEENE

#	Article	IF	CITATIONS
1	Sequential Use of Mushroom Body Neuron Subsets during Drosophila Odor Memory Processing. Neuron, 2007, 53, 103-115.	3.8	355
2	Drosophila olfactory memory: single genes to complex neural circuits. Nature Reviews Neuroscience, 2007, 8, 341-354.	4.9	353
3	A Genome-wide Drosophila Screen for Heat Nociception Identifies α2δ3 as an Evolutionarily Conserved Pain Gene. Cell, 2010, 143, 628-638.	13.5	283
4	The cavefish genome reveals candidate genes for eye loss. Nature Communications, 2014, 5, 5307.	5.8	256
5	Clock and cycle Limit Starvation-Induced Sleep Loss in Drosophila. Current Biology, 2010, 20, 1209-1215.	1.8	211
6	Evolutionary Convergence on Sleep Loss in Cavefish Populations. Current Biology, 2011, 21, 671-676.	1.8	210
7	A Clobal In Vivo Drosophila RNAi Screen Identifies NOT3 as a Conserved Regulator of Heart Function. Cell, 2010, 141, 142-153.	13.5	199
8	Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell, 2003, 2, 209-217.	3.0	170
9	The role of gene flow in rapid and repeated evolution of caveâ€related traits in Mexican tetra, <i>Astyanax mexicanus</i> . Molecular Ecology, 2018, 27, 4397-4416.	2.0	160
10	Taste-independent detection of the caloric content of sugar in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11644-11649.	3.3	148
11	TrpA1 Regulates Thermal Nociception in Drosophila. PLoS ONE, 2011, 6, e24343.	1.1	140
12	Drosophila DPM Neurons Form a Delayed and Branch-Specific Memory Trace after Olfactory Classical Conditioning. Cell, 2005, 123, 945-957.	13.5	134
13	Diverse Odor-Conditioned Memories Require Uniquely Timed Dorsal Paired Medial Neuron Output. Neuron, 2004, 44, 521-533.	3.8	120
14	Identification of Neurons with a Privileged Role in Sleep Homeostasis in Drosophila melanogaster. Current Biology, 2015, 25, 2928-2938.	1.8	117
15	The origins and evolution of sleep. Journal of Experimental Biology, 2018, 221, .	0.8	106
16	The Regulation of Drosophila Sleep. Current Biology, 2021, 31, R38-R49.	1.8	104
17	Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. ELife, 2018, 7, .	2.8	102
18	Drosophila Dorsal Paired Medial Neurons Provide a General Mechanism for Memory Consolidation. Current Biology, 2006, 16, 1524-1530.	1.8	100

#	Article	IF	CITATIONS
19	Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish. BMC Biology, 2015, 13, 15.	1.7	93
20	Drosophila Fatty Acid Taste Signals through the PLC Pathway in Sugar-Sensing Neurons. PLoS Genetics, 2013, 9, e1003710.	1.5	85
21	Postprandial sleep mechanics in Drosophila. ELife, 2016, 5, .	2.8	85
22	A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste. PLoS Genetics, 2017, 13, e1007059.	1.5	83
23	A Dopamine-Modulated Neural Circuit Regulating Aversive Taste Memory in Drosophila. Current Biology, 2015, 25, 1535-1541.	1.8	82
24	Distinct Visual Pathways Mediate <i>Drosophila</i> Larval Light Avoidance and Circadian Clock Entrainment. Journal of Neuroscience, 2011, 31, 6527-6534.	1.7	79
25	A single pair of leucokinin neurons are modulated by feeding state and regulate sleep–metabolism interactions. PLoS Biology, 2019, 17, e2006409.	2.6	71
26	translin Is Required for Metabolic Regulation of Sleep. Current Biology, 2016, 26, 972-980.	1.8	64
27	The lateral line confers evolutionarily derived sleep loss in the Mexican cavefish. Journal of Experimental Biology, 2017, 220, 284-293.	0.8	64
28	Evolutionary shift towards lateral line dependent prey capture behavior in the blind Mexican cavefish. Developmental Biology, 2018, 441, 328-337.	0.9	64
29	Altered regulation of sleep and feeding contribute to starvation resistance in <i>Drosophila</i> . Journal of Experimental Biology, 2014, 217, 3122-32.	0.8	62
30	Seeing the light: photobehavior in fruit fly larvae. Trends in Neurosciences, 2012, 35, 104-110.	4.2	60
31	Modulation of Drosophila post-feeding physiology and behavior by the neuropeptide leucokinin. PLoS Genetics, 2018, 14, e1007767.	1.5	60
32	A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution. Nature Communications, 2021, 12, 1447.	5.8	60
33	Stable transgenesis in <scp><i>Astyanax mexicanus</i></scp> using the <i>Tol2</i> transposase system. Developmental Dynamics, 2019, 248, 679-687.	0.8	57
34	Context-specific comparison of sleep acquisition systems in <i>Drosophila</i> . Biology Open, 2015, 4, 1558-1568.	0.6	54
35	Sleep-Dependent Modulation of Metabolic Rate in Drosophila. Sleep, 2017, 40, .	0.6	54
36	Optogenetic induction of aversive taste memory. Neuroscience, 2012, 222, 173-180.	1.1	53

#	Article	IF	CITATIONS
37	β-Adrenergic Signaling Regulates Evolutionarily Derived Sleep Loss in the Mexican Cavefish. Brain, Behavior and Evolution, 2012, 80, 233-243.	0.9	52
38	Convergence on reduced stress behavior in the Mexican blind cavefish. Developmental Biology, 2018, 441, 319-327.	0.9	52
39	The Taurine Transporter Eaat2 Functions in Ensheathing Clia to Modulate Sleep and Metabolic Rate. Current Biology, 2018, 28, 3700-3708.e4.	1.8	48
40	Genetic dissection of sleep–metabolism interactions in the fruit fly. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2015, 201, 869-877.	0.7	47
41	Manipulation of Gene Function in Mexican Cavefish. Journal of Visualized Experiments, 2019, , .	0.2	41
42	Cavefish brain atlases reveal functional and anatomical convergence across independently evolved populations. Science Advances, 2020, 6, .	4.7	41
43	Sleep Regulates Glial Plasticity and Expression of the Engulfment Receptor Draper Following Neural Injury. Current Biology, 2020, 30, 1092-1101.e3.	1.8	41
44	Drosophila insulin-like peptide 2 mediates dietary regulation of sleep intensity. PLoS Genetics, 2020, 16, e1008270.	1.5	39
45	Enhanced Sleep Is an Evolutionarily Adaptive Response to Starvation Stress in Drosophila. PLoS ONE, 2015, 10, e0131275.	1.1	39
46	Mio/dChREBP coordinately increases fat mass by regulating lipid synthesis and feeding behavior in Drosophila. Biochemical and Biophysical Research Communications, 2012, 426, 43-48.	1.0	36
47	An Adult Brain Atlas Reveals Broad Neuroanatomical Changes in Independently Evolved Populations of Mexican Cavefish. Frontiers in Neuroanatomy, 2019, 13, 88.	0.9	36
48	Nonrandom RNAseq gene expression associated with RNAlater and flash freezing storage methods. Molecular Ecology Resources, 2019, 19, 456-464.	2.2	31
49	Dark world rises: The emergence of cavefish as a model for the study of evolution, development, behavior, and disease. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2020, 334, 397-404.	0.6	31
50	Pleiotropic function of the oca2 gene underlies the evolution of sleep loss and albinism in cavefish. Current Biology, 2021, 31, 3694-3701.e4.	1.8	30
51	Repeated evolution of circadian clock dysregulation in cavefish populations. PLoS Genetics, 2021, 17, e1009642.	1.5	29
52	Gustatory processing and taste memory in <i>Drosophila</i> . Journal of Neurogenetics, 2016, 30, 112-121.	0.6	24
53	Ir56d-dependent fatty acid responses in Drosophila uncover taste discrimination between different classes of fatty acids. ELife, 2021, 10, .	2.8	22
54	Variation in sleep and metabolic function is associated with latitude and average temperature in <i>Drosophila melanogaster</i> . Ecology and Evolution, 2018, 8, 4084-4097.	0.8	21

#	Article	IF	CITATIONS
55	Forebrain sites of NPY action on estrous behavior in Syrian hamsters. Physiology and Behavior, 2003, 78, 711-716.	1.0	19
56	The sleep-feeding conflict: Understanding behavioral integration through genetic analysis in Drosophila. Aging, 2010, 2, 519-522.	1.4	19
57	Drosophila Memory: Dopamine Signals Punishment?. Current Biology, 2005, 15, R932-R934.	1.8	18
58	Molecular Mechanisms of Age-Related Sleep Loss in the Fruit Fly - A Mini-Review. Gerontology, 2013, 59, 334-339.	1.4	17
59	Hybridization underlies localized trait evolution in cavefish. IScience, 2022, 25, 103778.	1.9	17
60	Repeated evolution of eye loss in Mexican cavefish: Evidence of similar developmental mechanisms in independently evolved populations. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2020, 334, 423-437.	0.6	16
61	Starvation resistance is associated with developmentally specified changes in sleep, feeding and metabolic rate. Journal of Experimental Biology, 2019, 222, .	0.8	14
62	<i>Ade2</i> Functions in the <i>Drosophila</i> Fat Body To Promote Sleep. G3: Genes, Genomes, Genetics, 2018, 8, 3385-3395.	0.8	13
63	Evolution of the acoustic startle response of Mexican cavefish. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2020, 334, 474-485.	0.6	12
64	Neurofibromin regulates metabolic rate via neuronal mechanisms in Drosophila. Nature Communications, 2021, 12, 4285.	5.8	12
65	Kinematic analysis of social interactions deconstructs the evolved loss of schooling behavior in cavefish. PLoS ONE, 2022, 17, e0265894.	1.1	12
66	Unique transcriptional signatures of sleep loss across independently evolved cavefish populations. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2020, 334, 497-510.	0.6	11
67	Automated Measurements of Sleep and Locomotor Activity in Mexican Cavefish. Journal of Visualized Experiments, 2019, , .	0.2	9
68	Dietary fatty acids promote sleep through a tasteâ€independent mechanism. Genes, Brain and Behavior, 2020, 19, e12629.	1.1	9
69	Aggression Is Induced by Resource Limitation in the Monarch Caterpillar. IScience, 2020, 23, 101791.	1.9	9
70	Diversity in rest–activity patterns among Lake Malawi cichlid fishes suggests a novel axis of habitat partitioning. Journal of Experimental Biology, 2021, 224, .	0.8	9
71	Measuring metabolic rate in single flies during sleep and waking states via indirect calorimetry. Journal of Neuroscience Methods, 2022, 376, 109606.	1.3	9
72	Neurodegeneration: Paying It Off withÂSleep. Current Biology, 2015, 25, R234-R236.	1.8	7

#	Article	IF	CITATIONS
73	Evolutionary convergence of a neural mechanism in the cavefish lateral line system. ELife, 0, 11, .	2.8	5
74	Dopamine: On the Threshold of Sleep. Current Biology, 2012, 22, R949-R951.	1.8	4
75	Analysis of stress responses in <i>Astyanax</i> larvae reveals heterogeneity among different populations. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2020, 334, 486-496.	0.6	3
76	A screen for sleep and starvation resistance identifies a wake-promoting role for the auxiliary channel unc79. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	2
77	Expression of a constitutively active insulin receptor in Drosulfakinin (Dsk) neurons regulates metabolism and sleep in Drosophila. Biochemistry and Biophysics Reports, 2022, 30, 101280.	0.7	2
78	To rebound or not to rebound. ELife, 2017, 6, .	2.8	1
79	Flies sense the world while sleeping. Nature, 2021, 598, 423-424.	13.7	1
80	What Can a Blind Fish Teach Us About Sleep?. Frontiers for Young Minds, 0, 7, .	0.8	1
81	Study of small mammal populations within two Barn owl corridors at Folly Farm. Bioscience Horizons, 2009, 2, 155-163.	0.6	0
82	Development: Better Sleep On It, Children. Current Biology, 2014, 24, R569-R571.	1.8	0
83	Sleep: Helicon Cells Charge the Circuit. Current Biology, 2018, 28, R317-R319.	1.8	0
84	Drosophila insulin-like peptide 2 mediates dietary regulation of sleep intensity. , 2020, 16, e1008270.		0
85	Drosophila insulin-like peptide 2 mediates dietary regulation of sleep intensity. , 2020, 16, e1008270.		0
86	Drosophila insulin-like peptide 2 mediates dietary regulation of sleep intensity. , 2020, 16, e1008270.		0
87	Drosophila insulin-like peptide 2 mediates dietary regulation of sleep intensity. , 2020, 16, e1008270.		0
88	CaveCrawler: an interactive analysis suite for cavefish bioinformatics. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	0