
Roy V Sillitoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5352269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerebellar Dysfunction as a Source of Dystonic Phenotypes in Mice. Cerebellum, 2023, 22, 719-729.	2.5	10
2	Ankyrin-R Links Kv3.3 to the Spectrin Cytoskeleton and Is Required for Purkinje Neuron Survival. Journal of Neuroscience, 2022, 42, 2-15.	3.6	13
3	Zones and Stripes: Development of Cerebellar Topography. , 2022, , 45-66.		0
4	Silencing the Output of Cerebellar Neurons Using Cell Type-Specific Genetic Deletion of Vesicular GABA and Glutamate Transporters. Neuromethods, 2022, , 47-67.	0.3	4
5	Causal Evidence for a Role of Cerebellar Lobulus Simplex in Prefrontal-Hippocampal Interaction in Spatial Working Memory Decision-Making. Cerebellum, 2022, 21, 762-775.	2.5	9
6	Interactions Between Purkinje Cells and Granule Cells Coordinate the Development of Functional Cerebellar Circuits. Neuroscience, 2021, 462, 4-21.	2.3	30
7	Abnormal cerebellar function and tremor in a mouse model for nonâ€manifesting partially penetrant dystonia type 6. Journal of Physiology, 2021, 599, 2037-2054.	2.9	17
8	Wearable Peripheral Electrical Stimulation Devices for the Reduction of Essential Tremor: A Review. IEEE Access, 2021, 9, 80066-80076.	4.2	7
9	Neuromodulation of the cerebellum rescues movement in a mouse model of ataxia. Nature Communications, 2021, 12, 1295.	12.8	44
10	Mood Regulatory Actions of Active and Sham Nucleus Accumbens Deep Brain Stimulation in Antidepressant Resistant Rats. Frontiers in Human Neuroscience, 2021, 15, 644921.	2.0	4
11	Maturation of Purkinje cell firing properties relies on neurogenesis of excitatory neurons. ELife, 2021, 10, .	6.0	28
12	Deleting Mecp2 from the cerebellum rather than its neuronal subtypes causes a delay in motor learning in mice. ELife, 2021, 10, .	6.0	14
13	Abnormal Cerebellar Development in Autism Spectrum Disorders. Developmental Neuroscience, 2021, 43, 181-190.	2.0	43
14	Cerebellar Coordination of Neuronal Communication in Cerebral Cortex. Frontiers in Systems Neuroscience, 2021, 15, 781527.	2.5	20
15	Motor control: Internalizing your place in the world. Current Biology, 2021, 31, R1576-R1578.	3.9	3
16	MeCP2 Levels Regulate the 3D Structure of Heterochromatic Foci in Mouse Neurons. Journal of Neuroscience, 2020, 40, 8746-8766.	3.6	18
17	Loss of cerebellar function selectively affects intrinsic rhythmicity of eupneic breathing. Biology Open, 2020, 9, .	1.2	13
18	Multi-Disease Deep Brain Stimulation. IEEE Access, 2020, 8, 216933-216947.	4.2	6

#	Article	IF	CITATIONS
19	Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function. Scientific Reports, 2020, 10, 7737.	3.3	66
20	Defining research priorities in dystonia. Neurology, 2020, 94, 526-537.	1.1	26
21	Eph/ephrin Function Contributes to the Patterning of Spinocerebellar Mossy Fibers Into Parasagittal Zones. Frontiers in Systems Neuroscience, 2020, 14, 7.	2.5	10
22	Purkinje cell misfiring generates high-amplitude action tremors that are corrected by cerebellar deep brain stimulation. ELife, 2020, 9, .	6.0	57
23	Purkinje cell neurotransmission patterns cerebellar basket cells into zonal modules defined by distinct pinceau sizes. ELife, 2020, 9, .	6.0	25
24	Insights into cerebellar development and connectivity. Neuroscience Letters, 2019, 688, 2-13.	2.1	75
25	Functional Outcomes of Cerebellar Malformations. Frontiers in Cellular Neuroscience, 2019, 13, 441.	3.7	35
26	Medical Devices in Neurology. , 2019, , 409-413.		0
27	Cerebellar Lobulus Simplex and Crus I Differentially Represent Phase and Phase Difference of Prefrontal Cortical and Hippocampal Oscillations. Cell Reports, 2019, 27, 2328-2334.e3.	6.4	49
28	Current Opinions and Consensus for Studying Tremor in Animal Models. Cerebellum, 2019, 18, 1036-1063.	2.5	27
29	Zones and Stripes: Development of Cerebellar Topography. , 2019, , 1-23.		3
30	Consensus Paper: Experimental Neurostimulation of the Cerebellum. Cerebellum, 2019, 18, 1064-1097.	2.5	120
31	Emerging connections between cerebellar development, behaviour and complex brain disorders. Nature Reviews Neuroscience, 2019, 20, 298-313.	10.2	186
32	Persistent motor dysfunction despite homeostatic rescue of cerebellar morphogenesis in the Car8 waddles mutant mouse. Neural Development, 2019, 14, 6.	2.4	16
33	Genetically eliminating Purkinje neuron GABAergic neurotransmission increases their response gain to vestibular motion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3245-3250.	7.1	13
34	Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells. Scientific Reports, 2019, 9, 1742.	3.3	80
35	<i>In vivo</i> cerebellar circuit function is disrupted in an <i>mdx</i> mouse model of Duchenne muscular dystrophy. DMM Disease Models and Mechanisms, 2019, 13, .	2.4	12
36	A Programmable Multi-Biomarker Neural Sensor for Closed-Loop DBS. IEEE Access, 2019, 7, 230-244.	4.2	7

#	Article	IF	CITATIONS
37	Neurexophilin4 is a selectively expressed α-neurexin ligand that modulates specific cerebellar synapses and motor functions. ELife, 2019, 8, .	6.0	19
38	Bergmann Glia are Patterned into Topographic Molecular Zones in the Developing and Adult Mouse Cerebellum. Cerebellum, 2018, 17, 392-403.	2.5	15
39	Climbing Fiber Development Is Impaired in Postnatal Car8 wdl Mice. Cerebellum, 2018, 17, 56-61.	2.5	4
40	In Vivo Loose-Patch-Juxtacellular Labeling of Cerebellar Neurons in Mice. Neuromethods, 2018, , 1-18.	0.3	3
41	ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. Neuron, 2018, 97, 1235-1243.e5.	8.1	79
42	Shaping Diversity Into the Brain's Form and Function. Frontiers in Neural Circuits, 2018, 12, 83.	2.8	17
43	MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes. Molecular Cell, 2018, 70, 825-841.e6.	9.7	123
44	Cerebellar Modules and Their Role as Operational Cerebellar Processing Units. Cerebellum, 2018, 17, 654-682.	2.5	151
45	Recent advances in understanding the mechanisms of cerebellar granule cell development and function and their contribution to behavior. F1000Research, 2018, 7, 1142.	1.6	39
46	The pledge, the turn, and the prestige of transient cerebellar alterations in SCA6. Journal of Physiology, 2017, 595, 607-608.	2.9	0
47	WGAâ€Alexa Conjugates for Axonal Tracing. Current Protocols in Neuroscience, 2017, 79, 1.28.1-1.28.24.	2.6	19
48	Genetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice. Nature Communications, 2017, 8, 14912.	12.8	125
49	Disruption of the ATXN1–CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans. Nature Genetics, 2017, 49, 527-536.	21.4	113
50	Motor Circuit Abnormalities During Cerebellar Development. , 2017, , 105-127.		1
51	Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. Human Molecular Genetics, 2016, 25, ddw337.	2.9	68
52	Knowledge gaps and research recommendations for essential tremor. Parkinsonism and Related Disorders, 2016, 33, 27-35.	2.2	46
53	An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. Journal of Neuroscience Methods, 2016, 262, 21-31.	2.5	27
54	Pathogenesis of severe ataxia and tremor without the typical signs of neurodegeneration. Neurobiology of Disease, 2016, 86, 86-98.	4.4	49

#	Article	IF	CITATIONS
55	Consensus Paper: Cerebellar Development. Cerebellum, 2016, 15, 789-828.	2.5	337
56	Mossy Fibers Terminate Directly Within Purkinje Cell Zones During Mouse Development. Cerebellum, 2016, 15, 14-17.	2.5	28
57	Cerebellum and Cerebellar Connections. , 2015, , 133-205.		33
58	In vivo analysis of Purkinje cell firing properties during postnatal mouse development. Journal of Neurophysiology, 2015, 113, 578-591.	1.8	78
59	Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nature Reviews Neuroscience, 2015, 16, 79-93.	10.2	253
60	Pumilio1 Haploinsufficiency Leads to SCA1-like Neurodegeneration by Increasing Wild-Type Ataxin1 Levels. Cell, 2015, 160, 1087-1098.	28.9	139
61	α-Synuclein Expression in the Mouse Cerebellum Is Restricted to VGluT1 Excitatory Terminals and Is Enriched in Unipolar Brush Cells. Cerebellum, 2015, 14, 516-527.	2.5	17
62	A Voltage-Gated Calcium Channel Regulates Lysosomal Fusion with Endosomes and Autophagosomes and Is Required for Neuronal Homeostasis. PLoS Biology, 2015, 13, e1002103.	5.6	85
63	Cerebellar Zonal Patterning Relies on Purkinje Cell Neurotransmission. Journal of Neuroscience, 2014, 34, 8231-8245.	3.6	90
64	Purkinje cell compartmentalization in the cerebellum of the spontaneous mutant mouse dreher. Brain Structure and Function, 2014, 219, 35-47.	2.3	9
65	The small GTPases RhoA and Rac1 regulate cerebellar development by controlling cell morphogenesis, migration and foliation. Developmental Biology, 2014, 394, 39-53.	2.0	32
66	Development of the cerebellum: from gene expression patterns to circuit maps. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 149-164.	5.9	123
67	Zones and Stripes: Development of Cerebellar Topography. , 2013, , 43-59.		4
68	New roles for the cerebellum in health and disease. Frontiers in Systems Neuroscience, 2013, 7, 83.	2.5	165
69	Postnatal development of cerebellar zones revealed by neurofilament heavy chain protein expression. Frontiers in Neuroanatomy, 2013, 7, 9.	1.7	41
70	Establishment of topographic circuit zones in the cerebellum of scrambler mutant mice. Frontiers in Neural Circuits, 2013, 7, 122.	2.8	23
71	An Introduction to Journal Club in The Cerebellum. Cerebellum, 2012, 11, 828-828.	2.5	2

#	Article	IF	CITATIONS
73	Parasagittal compartmentation of cerebellar mossy fibers as revealed by the patterned expression of vesicular glutamate transporters VGLUT1 and VGLUT2. Brain Structure and Function, 2012, 217, 165-180.	2.3	67
74	Architecture and development of olivocerebellar circuit topography. Frontiers in Neural Circuits, 2012, 6, 115.	2.8	34
75	Revealing Neural Circuit Topography in Multi-Color. Journal of Visualized Experiments, 2011, , .	0.3	5
76	Fluorescence mapping of afferent topography in three dimensions. Brain Structure and Function, 2011, 216, 159-169.	2.3	28
77	Neurofilament Heavy Chain Expression Reveals a Unique Parasagittal Stripe Topography in the Mouse Cerebellum. Cerebellum, 2011, 10, 409-421.	2.5	18
78	Cerebellar Zones: History, Development, and Function. Cerebellum, 2011, 10, 301-306.	2.5	18
79	Patterned expression of a cocaine―and amphetamine―regulated transcript peptide reveals complex circuit topography in the rodent cerebellar cortex. Journal of Comparative Neurology, 2011, 519, 1781-1796.	1.6	37
80	X-linked Angelman-like syndrome caused by Slc9a6 knockout in mice exhibits evidence of endosomal–lysosomal dysfunction. Brain, 2011, 134, 3369-3383.	7.6	89
81	Engrailed Homeobox Genes Regulate Establishment of the Cerebellar Afferent Circuit Map. Journal of Neuroscience, 2010, 30, 10015-10024.	3.6	118
82	Engrailed Homeobox Genes Determine the Organization of Purkinje Cell Sagittal Stripe Gene Expression in the Adult Cerebellum. Journal of Neuroscience, 2008, 28, 12150-12162.	3.6	86
83	Golgi Cell Dendrites Are Restricted by Purkinje Cell Stripe Boundaries in the Adult Mouse Cerebellar Cortex. Journal of Neuroscience, 2008, 28, 2820-2826.	3.6	69
84	Desire, Disease, and the Origins of the Dopaminergic System. Schizophrenia Bulletin, 2007, 34, 212-219.	4.3	33
85	Morphology, Molecular Codes, and Circuitry Produce the Three-Dimensional Complexity of the Cerebellum. Annual Review of Cell and Developmental Biology, 2007, 23, 549-577.	9.4	346
86	Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. Progress in Brain Research, 2005, 148, 283-297.	1.4	106
87	Antigenic compartmentation of the primate and tree shrew cerebellum: a common topography of zebrin II in Macaca mulatta and Tupaia belangeri. Journal of Anatomy, 2004, 204, 257-269.	1.5	31
88	Abnormal HNK-1 expression in the cerebellum of an N-CAM null mouse. Journal of Neurocytology, 2004, 33, 117-130.	1.5	45
89	Topographical anatomy of the cerebellum in the guinea pig, Cavia porcellus. Brain Research, 2003, 965, 159-169.	2.2	25
90	Antigenic compartmentation of the cat cerebellar cortex. Brain Research, 2003, 977, 1-15.	2.2	31

#	Article	IF	CITATIONS
91	Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. Journal of Comparative Neurology, 2003, 456, 279-291.	1.6	185
92	Zebrin II compartmentation of the cerebellum in a basal insectivore, the Madagascan hedgehog tenrec Echinops telfairi. Journal of Anatomy, 2003, 203, 283-296.	1.5	36
93	Abnormal Dysbindin Expression in Cerebellar Mossy Fiber Synapses in the mdx Mouse Model of Duchenne Muscular Dystrophy. Journal of Neuroscience, 2003, 23, 6576-6585.	3.6	73
94	Whole-mount Immunohistochemistry: A High-throughput Screen for Patterning Defects in the Mouse Cerebellum. Journal of Histochemistry and Cytochemistry, 2002, 50, 235-244.	2.5	153
95	Compartmentation of the rabbit cerebellar cortex. Journal of Comparative Neurology, 2002, 444, 159-173.	1.6	41