
Masaki Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5352039/publications.pdf Version: 2024-02-01

Μλςλκι Τλνιλκλ

#	Article	IF	CITATIONS
1	Effects of GABAergic and Glutamatergic Inputs on Temporal Prediction Signals in the Primate Cerebellar Nucleus. Neuroscience, 2022, 482, 161-171.	2.3	1
2	Neural signals regulating motor synchronization in the primate deep cerebellar nuclei. Nature Communications, 2022, 13, 2504.	12.8	8
3	Nicotine promotes the utility of short-term memory during visual search in macaque monkeys. Psychopharmacology, 2022, 239, 3019-3029.	3.1	2
4	Roles of the Cerebellum in Motor Preparation and Prediction of Timing. Neuroscience, 2021, 462, 220-234.	2.3	33
5	Temporal Prediction Signals for Periodic Sensory Events in the Primate Central Thalamus. Journal of Neuroscience, 2021, 41, 1917-1927.	3.6	9
6	Ketamine-Induced Alteration of Working Memory Utility during Oculomotor Foraging Task in Monkeys. ENeuro, 2021, 8, ENEURO.0403-20.2021.	1.9	6
7	Effects of Optogenetic Suppression of Cortical Input on Primate Thalamic Neuronal Activity during Goal-Directed Behavior. ENeuro, 2021, 8, ENEURO.0511-20.2021.	1.9	3
8	Spontaneous grouping of saccade timing in the presence of task-irrelevant objects. PLoS ONE, 2021, 16, e0248530.	2.5	3
9	Spatial and temporal adaptation of predictive saccades based on motion inference. Scientific Reports, 2020, 10, 5280.	3.3	3
10	Consensus Paper: Experimental Neurostimulation of the Cerebellum. Cerebellum, 2019, 18, 1064-1097.	2.5	120
11	Neural oscillations in the primate caudate nucleus correlate with different preparatory states for temporal production. Communications Biology, 2019, 2, 102.	4.4	10
12	Entrained neuronal activity to periodic visual stimuli in the primate striatum compared with the cerebellum. ELife, 2019, 8, .	6.0	20
13	Temporal Generalization of Synchronized Saccades Beyond the Trained Range in Monkeys. Frontiers in Psychology, 2018, 9, 2172.	2.1	9
14	Different contributions of preparatory activity in the basal ganglia and cerebellum for self-timing. ELife, 2018, 7, .	6.0	58
15	Cerebellar Roles in Self-Timing for Sub- and Supra-Second Intervals. Journal of Neuroscience, 2017, 37, 3511-3522.	3.6	62
16	Facilitation of temporal prediction by electrical stimulation to the primate cerebellar nuclei. Neuroscience, 2017, 346, 190-196.	2.3	12
17	Causal Role of Noradrenaline in the Timing of Internally Generated Saccades in Monkeys. Neuroscience, 2017, 366, 15-22.	2.3	11
18	Predictive and tempo-flexible synchronization to a visual metronome in monkeys. Scientific Reports, 2017, 7, 6127.	3.3	44

Masaki Tanaka

#	Article	IF	CITATIONS
19	Implications of Lateral Cerebellum in Proactive Control of Saccades. Journal of Neuroscience, 2016, 36, 7066-7074.	3.6	24
20	Two different mechanisms for the detection of stimulus omission. Scientific Reports, 2016, 6, 20615.	3.3	11
21	Striatal dopamine modulates timing of self-initiated saccades. Neuroscience, 2016, 337, 131-142.	2.3	16
22	Correlation between Pupil Size and Subjective Passage of Time in Non-Human Primates. Journal of Neuroscience, 2016, 36, 11331-11337.	3.6	30
23	Two Types of Neurons in the Primate Globus Pallidus External Segment Play Distinct Roles in Antisaccade Generation. Cerebral Cortex, 2016, 26, 1187-1199.	2.9	21
24	Application of radiosurgical techniques to produce a primate model of brain lesions. Frontiers in Systems Neuroscience, 2015, 9, 67.	2.5	7
25	Different Neuronal Computations of Spatial Working Memory for Multiple Locations within versus across Visual Hemifields. Journal of Neuroscience, 2014, 34, 5621-5626.	3.6	24
26	Differential Neuronal Representation of Spatial Attention Dependent on Relative Target Locations during Multiple Object Tracking. Journal of Neuroscience, 2014, 34, 9963-9969.	3.6	6
27	Manipulation of Object Choice by Electrical Microstimulation in Macaque Frontal Eye Fields. Cerebral Cortex, 2014, 24, 1493-1501.	2.9	2
28	Temporally Specific Sensory Signals for the Detection of Stimulus Omission in the Primate Deep Cerebellar Nuclei. Journal of Neuroscience, 2013, 33, 15432-15441.	3.6	59
29	Retrospective and prospective information coding by different neurons in the prefrontal cortex. NeuroReport, 2013, 24, 73-78.	1.2	1
30	Neuronal Correlates of Multiple Top–Down Signals during Covert Tracking of Moving Objects in Macaque Prefrontal Cortex. Journal of Cognitive Neuroscience, 2012, 24, 2043-2056.	2.3	13
31	Alteration of the timing of selfâ€initiated but not reactive saccades by electrical stimulation in the supplementary eye field. European Journal of Neuroscience, 2012, 36, 3258-3268.	2.6	28
32	Contribution of the central thalamus to the generation of volitional saccades. European Journal of Neuroscience, 2011, 33, 2046-2057.	2.6	41
33	Thalamic roles in eye movements. , 2011, , .		7
34	Roles of the Primate Motor Thalamus in the Generation of Antisaccades. Journal of Neuroscience, 2010, 30, 5108-5117.	3.6	55
35	Enhanced Modulation of Neuronal Activity during Antisaccades in the Primate Globus Pallidus. Cerebral Cortex, 2009, 19, 206-217.	2.9	52
36	Neuronal activity in the primate globus pallidus during smooth pursuit eye movements. NeuroReport, 2009, 20, 121-125.	1.2	26

Masaki Tanaka

#	Article	IF	CITATIONS
37	Spatiotemporal Properties of Eye Position Signals in the Primate Central Thalamus. Cerebral Cortex, 2007, 17, 1504-1515.	2.9	40
38	Cognitive Signals in the Primate Motor Thalamus Predict Saccade Timing. Journal of Neuroscience, 2007, 27, 12109-12118.	3.6	91
39	Inactivation of the central thalamus delays self-timed saccades. Nature Neuroscience, 2006, 9, 20-22.	14.8	45
40	Effects of eye position on estimates of eye displacement for spatial updating. NeuroReport, 2005, 16, 1261-1265.	1.2	5
41	Involvement of the Central Thalamus in the Control of Smooth Pursuit Eye Movements. Journal of Neuroscience, 2005, 25, 5866-5876.	3.6	89
42	Contribution of Signals Downstream From Adaptation to Saccade Programming. Journal of Neurophysiology, 2003, 90, 2080-2086.	1.8	30
43	Role of Arcuate Frontal Cortex of Monkeys in Smooth Pursuit Eye Movements. II. Relation to Vector Averaging Pursuit. Journal of Neurophysiology, 2002, 87, 2700-2714.	1.8	30
44	Role of Arcuate Frontal Cortex of Monkeys in Smooth Pursuit Eye Movements. I. Basic Response Properties to Retinal Image Motion and Position. Journal of Neurophysiology, 2002, 87, 2684-2699.	1.8	80
45	Enhancement of Multiple Components of Pursuit Eye Movement by Microstimulation in the Arcuate Frontal Pursuit Area in Monkeys. Journal of Neurophysiology, 2002, 87, 802-818.	1.8	75
46	Regulation of the gain of visually guided smooth-pursuit eye movements by frontal cortex. Nature, 2001, 409, 191-194.	27.8	157
47	Context-Dependent Smooth Eye Movements Evoked by Stationary Visual Stimuli in Trained Monkeys. Journal of Neurophysiology, 2000, 84, 1748-1762.	1.8	19
48	Latency of saccades during smooth-pursuit eye movement in man. Experimental Brain Research, 1998, 121, 92-98.	1.5	43
49	Neuronal Responses Related to Smooth Pursuit Eye Movements in the Periarcuate Cortical Area of Monkeys. Journal of Neurophysiology, 1998, 80, 28-47.	1.8	140
50	Slow eye movement evoked by sudden appearance of a stationary visual stimulus observed in a step-ramp smooth pursuit task in monkey. Neuroscience Research, 1997, 29, 93-98.	1.9	5
51	Adaptive changes in human smooth pursuit eye movement. Neuroscience Research, 1996, 25, 391-398.	1.9	51
52	1602 Discharge characteristics of pursuit cells in monkey frontal eye field. Neuroscience Research, 1996, 25, S170.	1.9	2
53	Simple-spike activity of floccular Purkinje cells responding to sinusoidal vertical rotation and optokinetic stimuli in alert cats. Neuroscience Research, 1996, 24, 275-289.	1.9	26