
Miyo T Morita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5351789/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Connected function of PRAF/RLD and GNOM in membrane trafficking controls intrinsic cell polarity in plants. Nature Communications, 2022, 13, 7.	12.8	19
2	LAZY1-LIKE-mediated gravity signaling pathway in root gravitropic set-point angle control. Plant Physiology, 2021, 187, 1087-1095.	4.8	9
3	A Three-Dimensional Scanning System for Digital Archiving and Quantitative Evaluation of <i>Arabidopsis</i> Plant Architectures. Plant and Cell Physiology, 2021, 62, 1975-1982.	3.1	4
4	Analysis of a mathematical model of shoot gravitropism in <i>Arabidopsis thaliana </i> . Plant Morphology, 2021, 33, 71-76.	0.1	0
5	Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nature Communications, 2020, 11, 76.	12.8	80
6	Design and chemical synthesis of root gravitropism inhibitors: Bridged analogues of ku-76 have more potent activity. Phytochemistry, 2020, 179, 112508.	2.9	3
7	Gravity-Sensing Tissues for Gravitropism Are Required for "Anti-Gravitropic―Phenotypes of Izy Multiple Mutants in Arabidopsis. Plants, 2020, 9, 615.	3.5	12
8	Essential structural features of (2Z,4E)-5-phenylpenta-2,4-dienoic acid for inhibition of root gravitropism. Phytochemistry, 2020, 172, 112287.	2.9	3
9	Micromanipulation of amyloplasts with optical tweezers in <i>Arabidopsis</i> stems. Plant Biotechnology, 2020, 37, 405-415.	1.0	8
10	A mathematical model explores the contributions of bending and stretching forces to shoot gravitropism in Arabidopsis. Quantitative Plant Biology, 2020, 1, .	2.0	4
11	Bridging the gap between amyloplasts and directional auxin transport in plant gravitropism. Current Opinion in Plant Biology, 2019, 52, 54-60.	7.1	41
12	Mitochondrial Pyruvate Dehydrogenase Contributes to Auxin-Regulated Organ Development. Plant Physiology, 2019, 180, 896-909.	4.8	41
13	Gravity sensing and signal conversion in plant gravitropism. Journal of Experimental Botany, 2019, 70, 3495-3506.	4.8	79
14	Polar vacuolar distribution is essential for accurate asymmetric division of <i>Arabidopsis</i> zygotes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2338-2343.	7.1	71
15	The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots. Plant Cell, 2017, 29, 1984-1999.	6.6	143
16	Molecular Mechanism of Plant Gravitropism. Kagaku To Seibutsu, 2017, 55, 624-630.	0.0	0
17	Isolation of New Gravitropic Mutants under Hypergravity Conditions. Frontiers in Plant Science, 2016, 7, 1443.	3.6	7
18	Efficient In Planta Detection and Dissection of De Novo Mutation Events in the <i>Arabidopsis thaliana</i> Disease Resistance Gene <i>UNI</i> . Plant and Cell Physiology, 2016, 57, 1123-1132.	3.1	3

MIYO T MORITA

#	Article	IF	CITATIONS
19	An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems. Plant Signaling and Behavior, 2016, 11, e1010947.	2.4	21
20	Regulation of organ straightening and plant posture by an actin–myosin XI cytoskeleton. Nature Plants, 2015, 1, 15031.	9.3	60
21	Live Cell Imaging of Cytoskeletal and Organelle Dynamics in Gravity-Sensing Cells in Plant Gravitropism. Methods in Molecular Biology, 2015, 1309, 57-69.	0.9	12
22	Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nature Communications, 2015, 6, 8822.	12.8	74
23	ldentification of gravitropic response indicator genes in <i>Arabidopsis</i> inflorescence stems. Plant Signaling and Behavior, 2014, 9, e29570.	2.4	27
24	A Unique HEAT Repeat-Containing Protein SHOOT GRAVITROPISM6 is Involved in Vacuolar Membrane Dynamics in Gravity-Sensing Cells of Arabidopsis Inflorescence Stem. Plant and Cell Physiology, 2014, 55, 811-822.	3.1	23
25	The Plant Endomembrane System—A Complex Network Supporting Plant Development and Physiology. Plant and Cell Physiology, 2014, 55, 667-671.	3.1	25
26	Auxin transport and activity regulate stomatal patterning and development. Nature Communications, 2014, 5, 3090.	12.8	118
27	Centrifuge Microscopy to Analyze the Sedimentary Movements of Amyloplasts. Bio-protocol, 2014, 4, .	0.4	2
28	Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope. Plant Journal, 2013, 76, 648-660.	5.7	51
29	Mechanism of Higher Plant Gravity Sensing. American Journal of Botany, 2013, 100, 91-100.	1.7	98
30	Dynamic behavior of plastids related to environmental response. Current Opinion in Plant Biology, 2012, 15, 722-728.	7.1	17
31	Live-cell imaging of plant gravity sensing by using a vertical-stage confocal microscope and a centrifuge microscope. Plant Morphology, 2012, 24, 23-32.	0.1	0
32	Developmental changes in crossover frequency in Arabidopsis. Plant Journal, 2011, 65, 589-599.	5.7	18
33	The occurrence of â€~bulbs', a complex configuration of the vacuolar membrane, is affected by mutations of vacuolar SNARE and phospholipase in Arabidopsis. Plant Journal, 2011, 68, 64-73.	5.7	35
34	Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nature Cell Biology, 2011, 13, 447-452.	10.3	295
35	An <i>Arabidopsis</i> E3 Ligase, SHOOT GRAVITROPISM9, Modulates the Interaction between Statoliths and F-Actin in Gravity Sensing Å. Plant Cell, 2011, 23, 1830-1848.	6.6	87
36	Vacuolar/pre-vacuolar compartment Qa-SNAREs VAM3/SYP22 and PEP12/SYP21 have interchangeable functions in Arabidopsis. Plant Journal, 2010, 64, 864-873.	5.7	68

MIYO T MORITA

#	Article	IF	CITATIONS
37	Defects in Dynamics and Functions of Actin Filament in Arabidopsis Caused by the Dominant-Negative Actin fiz1-Induced Fragmentation of Actin Filament. Plant and Cell Physiology, 2010, 51, 333-338.	3.1	50
38	Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22344-22349.	7.1	287
39	Role of PIN-mediated auxin efflux in apical hook development of <i>Arabidopsis thaliana</i> . Development (Cambridge), 2010, 137, 607-617.	2.5	297
40	Loss-of-Function Mutations of Retromer Large Subunit Genes Suppress the Phenotype of an <i>Arabidopsis zig</i> Mutant That Lacks Qb-SNARE VTI11 Â. Plant Cell, 2010, 22, 159-172.	6.6	33
41	Directional Gravity Sensing in Gravitropism. Annual Review of Plant Biology, 2010, 61, 705-720.	18.7	289
42	Dynamic Aspects of Ion Accumulation by Vesicle Traffic Under Salt Stress in Arabidopsis. Plant and Cell Physiology, 2009, 50, 2023-2033.	3.1	130
43	ZIP Genes Encode Proteins Involved in Membrane Trafficking of the TGN–PVC/Vacuoles. Plant and Cell Physiology, 2009, 50, 2057-2068.	3.1	69
44	A Genetic Framework for the Control of Cell Division and Differentiation in the Root Meristem. Science, 2008, 322, 1380-1384.	12.6	802
45	A SNARE Complex Unique to Seed Plants Is Required for Protein Storage Vacuole Biogenesis and Seed Development of <i>Arabidopsis thaliana</i> . Plant Cell, 2008, 20, 3006-3021.	6.6	213
46	endodermal-amyloplast less 1 is a novel allele of SHORT-ROOT. Advances in Space Research, 2007, 39, 1127-1133.	2.6	27
47	A C2H2-type zinc finger protein, SGR5, is involved in early events of gravitropism in Arabidopsis inflorescence stems. Plant Journal, 2006, 47, 619-628.	5.7	81
48	Conversion of Functional Specificity in Qb-SNARE VTI1 Homologues of Arabidopsis. Current Biology, 2005, 15, 555-560.	3.9	43
49	Amyloplasts and Vacuolar Membrane Dynamics in the Living Graviperceptive Cell of the Arabidopsis Inflorescence Stem. Plant Cell, 2005, 17, 548-558.	6.6	118
50	From The Cover: Shoot circumnutation and winding movements require gravisensing cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18742-18747.	7.1	73
51	Gravity sensing and signaling. Current Opinion in Plant Biology, 2004, 7, 712-718.	7.1	251
52	Phage DNA packaging. Genes To Cells, 2003, 2, 537-545.	1.2	159
53	The VTI Family of SNARE Proteins Is Necessary for Plant Viability and Mediates Different Protein Transport Pathways[W]. Plant Cell, 2003, 15, 2885-2899.	6.6	194
54	A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important forArabidopsisshoot gravitropism. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8589-8594.	7.1	187

MIYO T MORITA

#	Article	IF	CITATIONS
55	Arabidopsis thaliana: A Model for the Study of Root and Shoot Gravitropism. The Arabidopsis Book, 2002, 1, e0043.	0.5	35
56	Involvement of the Vacuoles of the Endodermis in the Early Process of Shoot Gravitropism in Arabidopsis. Plant Cell, 2002, 14, 47-56.	6.6	291
57	SGR2, a Phospholipase-Like Protein, and ZIG/SGR4, a SNARE, Are Involved in the Shoot Gravitropism of Arabidopsis. Plant Cell, 2002, 14, 33-46.	6.6	220
58	Role of Endodermal Cell Vacuoles in Shoot Gravitropism. Journal of Plant Growth Regulation, 2002, 21, 113-119.	5.1	26
59	Analysis of the Fine Structure of the Prohead Binding Domain of the Packaging Protein of Bacteriophage T3 Using a Hexapeptide, an Analog of a Prohead Binding Site. Virology, 1995, 211, 516-524.	2.4	17
60	Structural and Functional Domains of the Large Subunit of the Bacteriophage T3 DNA Packaging Enzyme: importance of the C-Terminal Region in Prohead Binding. Journal of Molecular Biology, 1995, 245, 635-644.	4.2	59
61	Analysis of functional domains of the packaging proteins of bacteriophage T3 by site-directed mutagenesis. Journal of Molecular Biology, 1994, 235, 248-259.	4.2	29
62	DNA Packaging ATPase of Bacteriophage T3. Virology, 1993, 193, 748-752.	2.4	88
63	Signal Transduction in Gravitropism. , 0, , 21-45.		1