
## Tomas Polivka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5351536/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ultrafast Dynamics of Carotenoid Excited Statesâ^'From Solution to Natural and Artificial Systems.<br>Chemical Reviews, 2004, 104, 2021-2072.                                                                                                            | 47.7 | 811       |
| 2  | Biomimetic and Microbial Approaches to Solar Fuel Generation. Accounts of Chemical Research, 2009,<br>42, 1899-1909.                                                                                                                                     | 15.6 | 403       |
| 3  | Modified Phthalocyanines for Efficient Near-IR Sensitization of Nanostructured TiO2 Electrode.<br>Journal of the American Chemical Society, 2002, 124, 4922-4932.                                                                                        | 13.7 | 396       |
| 4  | Molecular Factors Controlling Photosynthetic Light Harvesting by Carotenoids. Accounts of<br>Chemical Research, 2010, 43, 1125-1134.                                                                                                                     | 15.6 | 293       |
| 5  | Direct observation of the (forbidden) S1 state in carotenoids. Proceedings of the National Academy of<br>Sciences of the United States of America, 1999, 96, 4914-4917.                                                                                  | 7.1  | 275       |
| 6  | Dark excited states of carotenoids: Consensus and controversy. Chemical Physics Letters, 2009, 477, 1-11.                                                                                                                                                | 2.6  | 243       |
| 7  | Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Physical<br>Chemistry Chemical Physics, 2004, 6, 3009-3016.                                                                                                        | 2.8  | 215       |
| 8  | Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an<br>intramolecular charge transfer state. Proceedings of the National Academy of Sciences of the United<br>States of America, 2002, 99, 16760-16765. | 7.1  | 193       |
| 9  | Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nature<br>Chemical Biology, 2015, 11, 287-291.                                                                                                                    | 8.0  | 173       |
| 10 | Spectroscopic and Dynamic Properties of the Peridinin Lowest Singlet Excited Statesâ€. Journal of<br>Physical Chemistry A, 2001, 105, 10296-10306.                                                                                                       | 2.5  | 158       |
| 11 | Carotenoid S1 State in a Recombinant Light-Harvesting Complex of Photosystem II. Biochemistry, 2002,<br>41, 439-450.                                                                                                                                     | 2.5  | 139       |
| 12 | Dynamics of Excited States of the Carotenoid Peridinin in Polar Solvents:Â Dependence on Excitation<br>Wavelength, Viscosity, and Temperature. Journal of Physical Chemistry B, 2003, 107, 5339-5348.                                                    | 2.6  | 138       |
| 13 | Dynamics of vibrational relaxation in the S1 state of carotenoids having 11 conjugated CĩC bonds.<br>Chemical Physics Letters, 2002, 355, 465-470.                                                                                                       | 2.6  | 135       |
| 14 | B800→B850 Energy Transfer Mechanism in Bacterial LH2 Complexes Investigated by B800 Pigment<br>Exchange. Biophysical Journal, 2000, 78, 2590-2596.                                                                                                       | 0.5  | 133       |
| 15 | Femtosecond Time-Resolved Transient Absorption Spectroscopy of Xanthophylls. Journal of Physical<br>Chemistry B, 2006, 110, 22872-22885.                                                                                                                 | 2.6  | 133       |
| 16 | Spectroscopic Properties of the Carotenoid 3â€~-Hydroxyechinenone in the Orange Carotenoid Protein from the CyanobacteriumArthrospira maximaâ€. Biochemistry, 2005, 44, 3994-4003.                                                                       | 2.5  | 124       |
| 17 | A comparative study of the redox and excited state properties of (nBu4N)2[Mo6X14] and (nBu4N)2[Mo6X8(CF3COO)6] (X = Cl, Br, or I). Dalton Transactions, 2013, 42, 7224.                                                                                  | 3.3  | 123       |
| 18 | Exciton Delocalization Probed by Excitation Annihilation in the Light-Harvesting Antenna LH2.<br>Physical Review Letters, 2001, 86, 4167-4170.                                                                                                           | 7.8  | 121       |

| #  | Article                                                                                                                                                                                                                                                                                                                                                           | IF     | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 19 | Influence of the Electron-Cation Interaction on Electron Mobility in Dye-Sensitized ZnO<br>and <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Nanocry:<br>A Study Using Ultrafast Terahertz Spectroscopy. Physical Review Letters, 2010, 104, 197401. | stals: | 116       |
| 20 | Near-Infrared Time-Resolved Study of the S1 State Dynamics of the Carotenoid Spheroidene. Journal of Physical Chemistry B, 2001, 105, 1072-1080.                                                                                                                                                                                                                  | 2.6    | 107       |
| 21 | Photoinduced Electron Transfer between a Carotenoid and TiO2Nanoparticle. Journal of the American<br>Chemical Society, 2002, 124, 13949-13957.                                                                                                                                                                                                                    | 13.7   | 94        |
| 22 | The Carotenoid S1 State in LH2 Complexes from Purple Bacteria Rhodobacter sphaeroides and<br>Rhodopseudomonas acidophila:  S1 Energies, Dynamics, and Carotenoid Radical Formation. Journal of<br>Physical Chemistry B, 2002, 106, 11016-11025.                                                                                                                   | 2.6    | 93        |
| 23 | Self-Assembled Aggregates of the Carotenoid Zeaxanthin:  Time-Resolved Study of Excited States.<br>Journal of Physical Chemistry A, 2005, 109, 1521-1529.                                                                                                                                                                                                         | 2.5    | 91        |
| 24 | Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids. Physical Chemistry Chemical Physics, 2009, 11, 8795.                                                                                                                                                                                                                            | 2.8    | 89        |
| 25 | Spectroscopy of the peridinin–chlorophyll-a protein: Insight into light-harvesting strategy of marine algae. Archives of Biochemistry and Biophysics, 2007, 458, 111-120.                                                                                                                                                                                         | 3.0    | 83        |
| 26 | Excited-State Processes in the Carotenoid Zeaxanthin after Excess Energy Excitation. Journal of Physical Chemistry A, 2005, 109, 6852-6859.                                                                                                                                                                                                                       | 2.5    | 82        |
| 27 | Femtosecond Time-Resolved Absorption Spectroscopy of Astaxanthin in Solution and in α-Crustacyanin.<br>Journal of Physical Chemistry A, 2005, 109, 3120-3127.                                                                                                                                                                                                     | 2.5    | 80        |
| 28 | Energy Transfer in the Major Intrinsic Light-Harvesting Complex fromAmphidinium carteraeâ€.<br>Biochemistry, 2006, 45, 8516-8526.                                                                                                                                                                                                                                 | 2.5    | 76        |
| 29 | Exciton Relaxation and Polaron Formation in LH2 at Low Temperature. Journal of Physical Chemistry<br>B, 2000, 104, 1088-1096.                                                                                                                                                                                                                                     | 2.6    | 72        |
| 30 | Tuning proton coupled electron transfer from tyrosine: A competition between concerted and step-wise mechanisms. Physical Chemistry Chemical Physics, 2004, 6, 4851-4858.                                                                                                                                                                                         | 2.8    | 72        |
| 31 | Identification of a single peridinin sensing Chl- <i>a</i> excitation in reconstituted PCP by<br>crystallography and spectroscopy. Proceedings of the National Academy of Sciences of the United<br>States of America, 2009, 106, 20764-20769.                                                                                                                    | 7.1    | 69        |
| 32 | Ultrafast Formation of a Carotenoid Radical in LH2 Antenna Complexes of Purple Bacteria. Journal of<br>Physical Chemistry B, 2004, 108, 15398-15407.                                                                                                                                                                                                              | 2.6    | 63        |
| 33 | Energy Transfer within Zn-Porphyrin Dendrimers:  Study of the Singletâ^'Singlet Annihilation Kinetics.<br>Journal of Physical Chemistry A, 2005, 109, 10654-10662.                                                                                                                                                                                                | 2.5    | 63        |
| 34 | Synthesis and Electron Transfer Studies of Rutheniumâ^'Terpyridine-Based Dyads Attached to<br>Nanostructured TiO2. Inorganic Chemistry, 2007, 46, 638-651.                                                                                                                                                                                                        | 4.0    | 63        |
| 35 | Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8570-8575.                                                                                                                         | 7.1    | 59        |
| 36 | A Unified Picture of S* in Carotenoids. Journal of Physical Chemistry Letters, 2016, 7, 3347-3352.                                                                                                                                                                                                                                                                | 4.6    | 59        |

Tomas Polivka

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Femtosecond Carotenoid to Retinal Energy Transfer in Xanthorhodopsin. Biophysical Journal, 2009,<br>96, 2268-2277.                                                                                                                    | 0.5  | 58        |
| 38 | Tuning Energy Transfer in the Peridinin–chlorophyll Complex by Reconstitution with Different<br>Chlorophylls. Photosynthesis Research, 2005, 86, 217-227.                                                                             | 2.9  | 57        |
| 39 | Carotenoid–protein interaction alters the S1 energy of hydroxyechinenone in the Orange Carotenoid<br>Protein. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 248-254.                                                     | 1.0  | 57        |
| 40 | Fast Energy Transfer and Exciton Dynamics in Chlorosomes of the Green Sulfur Bacterium Chlorobium tepidum. Journal of Physical Chemistry A, 1998, 102, 4392-4398.                                                                     | 2.5  | 56        |
| 41 | Ultrafast Carotenoid Band Shifts Probe Structure and Dynamics in Photosynthetic Antenna<br>Complexesâ€. Biochemistry, 1998, 37, 7057-7061.                                                                                            | 2.5  | 56        |
| 42 | Flash Photolysis of Cutinase: Identification and Decay Kinetics of Transient Intermediates Formed upon UV Excitation of Aromatic Residues. Biophysical Journal, 2009, 97, 211-226.                                                    | 0.5  | 55        |
| 43 | Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll<br>synthase–HliC/D complex. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1430-1439.                                                    | 1.0  | 54        |
| 44 | Photophysical Properties of Xanthophylls in Carotenoproteins from Human Retina¶. Photochemistry<br>and Photobiology, 2003, 78, 138.                                                                                                   | 2.5  | 53        |
| 45 | A Near-Infrared Transient Absorption Study of the Excited-State Dynamics of the Carotenoid<br>Spirilloxanthin in Solution and in the LH1 Complex ofRhodospirillum rubrum. Journal of Physical<br>Chemistry B, 2003, 107, 11216-11223. | 2.6  | 52        |
| 46 | Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1<br>protein from Physcomitrella patens. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1870-1878.                              | 1.0  | 51        |
| 47 | Ultrafast singlet energy transfer competes with intersystem crossing in a multi-center transition metal polypyridine complex. Chemical Physics Letters, 2004, 386, 336-341.                                                           | 2.6  | 50        |
| 48 | Photon echo spectroscopy reveals structure-dynamics relationships in carotenoids. Physical Review B, 2009, 79, .                                                                                                                      | 3.2  | 47        |
| 49 | Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S* state. Physical Chemistry Chemical Physics, 2016, 18, 14619-14628.                                                      | 2.8  | 47        |
| 50 | Role of Xanthophylls in Light Harvesting in Green Plants: A Spectroscopic Investigation of Mutant<br>LHCII and Lhcb Pigment–Protein Complexes. Journal of Physical Chemistry B, 2012, 116, 3834-3849.                                 | 2.6  | 46        |
| 51 | Carotenoid and Pheophytin on Semiconductor Surface:  Self-Assembly and Photoinduced Electron<br>Transfer. Journal of the American Chemical Society, 2004, 126, 3066-3067.                                                             | 13.7 | 45        |
| 52 | Distinct Photophysics of the Isomers of B <sub>18</sub> H <sub>22</sub> Explained. Inorganic<br>Chemistry, 2012, 51, 1471-1479.                                                                                                       | 4.0  | 45        |
| 53 | Dynamics of Energy Transfer from Lycopene to Bacteriochlorophyll in Genetically-Modified LH2<br>Complexes ofRhodobacter sphaeroidesâ€. Biochemistry, 2002, 41, 4127-4136.                                                             | 2.5  | 44        |
| 54 | Ultrafast Carotenoid Band Shifts: Experiment and Theoryâ€. Journal of Physical Chemistry B, 2004, 108,<br>10398-10403.                                                                                                                | 2.6  | 42        |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Ultrafast intramolecular charge transfer in tetrapyrazinoporphyrazines controls the quantum yields of fluorescence and singlet oxygen. Physical Chemistry Chemical Physics, 2010, 12, 2555.                                      | 2.8  | 41        |
| 56 | The full dynamics of energy relaxation in large organic molecules: from photo-excitation to solvent heating. Chemical Science, 2019, 10, 4792-4804.                                                                              | 7.4  | 40        |
| 57 | Synthesis and Characterization of Dinuclear Ruthenium Complexes Covalently Linked to Rull<br>Tris-bipyridine: An Approach to Mimics of the Donor Side of Photosystem II. Chemistry - A European<br>Journal, 2005, 11, 7305-7314. | 3.3  | 39        |
| 58 | Twisting a Î <sup>2</sup> -Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection.<br>Journal of Biological Chemistry, 2017, 292, 1396-1403.                                                      | 3.4  | 37        |
| 59 | Excited-state properties of the 16 kDa red carotenoid protein from Arthrospira maxima. Biochimica Et<br>Biophysica Acta - Bioenergetics, 2011, 1807, 30-35.                                                                      | 1.0  | 36        |
| 60 | Light-Driven Tyrosine Radical Formation in a Rutheniumâ^'Tyrosine Complex Attached to Nanoparticle<br>TiO2. Inorganic Chemistry, 2002, 41, 6258-6266.                                                                            | 4.0  | 35        |
| 61 | New paradigm of transition metal polypyridine complex photochemistry. Faraday Discussions, 2004, 127, 295-305.                                                                                                                   | 3.2  | 33        |
| 62 | Energy transfer and conformational dynamics in Zn–porphyrin dendrimers. Chemical Physics Letters, 2005, 403, 205-210.                                                                                                            | 2.6  | 33        |
| 63 | Inter-pigment interactions in the peridinin chlorophyll protein studied by global and target analysis of time resolved absorption spectra. Chemical Physics, 2009, 357, 70-78.                                                   | 1.9  | 33        |
| 64 | Excited state properties of aryl carotenoids. Physical Chemistry Chemical Physics, 2010, 12, 3112.                                                                                                                               | 2.8  | 33        |
| 65 | Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP<br>complex from Nannochloropsis oceanica. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857,<br>370-379.                  | 1.0  | 33        |
| 66 | Molecular Origin of Photoprotection in Cyanobacteria Probed by Watermarked Femtosecond<br>Stimulated Raman Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 1788-1792.                                              | 4.6  | 31        |
| 67 | Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria. Photosynthesis Research, 2017, 131, 105-117.                                                               | 2.9  | 30        |
| 68 | Role of hydrogen bond alternation and charge transfer states in photoactivation of the Orange Carotenoid Protein. Communications Biology, 2021, 4, 539.                                                                          | 4.4  | 30        |
| 69 | An intramolecular charge transfer state of carbonyl carotenoids: implications for excited state dynamics of apo-carotenals and retinal. Physical Chemistry Chemical Physics, 2011, 13, 10787.                                    | 2.8  | 29        |
| 70 | Towards characterization of DNA structure under physiological conditions in vivo at the single-molecule level using single-pair FRET. Nucleic Acids Research, 2012, 40, e121-e121.                                               | 14.5 | 29        |
| 71 | Tuning the Spectroscopic Properties of Aryl Carotenoids by Slight Changes in Structure. Journal of Physical Chemistry B, 2015, 119, 1457-1467.                                                                                   | 2.6  | 29        |
| 72 | Stepwise Charge Separation from a Rutheniumâ^'Tyrosine Complex to a Nanocrystalline TiO2Film.<br>Journal of Physical Chemistry B, 2004, 108, 12904-12910.                                                                        | 2.6  | 28        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | β-Carotene to bacteriochlorophyll c energy transfer in self-assembled aggregates mimicking<br>chlorosomes. Chemical Physics, 2010, 373, 90-97.                                                             | 1.9 | 26        |
| 74 | Polarity-Tuned Energy Transfer Efficiency in Artificial Light-Harvesting Antennae Containing Carbonyl<br>Carotenoids Peridinin and Fucoxanthin. Journal of Physical Chemistry C, 2007, 111, 467-476.       | 3.1 | 25        |
| 75 | Energetics and Dynamics of the Low-Lying Electronic States of Constrained Polyenes: Implications for<br>Infinite Polyenes. Journal of Physical Chemistry A, 2013, 117, 1449-1465.                          | 2.5 | 25        |
| 76 | Triplet–triplet energy transfer from chlorophylls to carotenoids in two antenna complexes from<br>dinoflagellate Amphidinium carterae. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 341-349. | 1.0 | 25        |
| 77 | Optical spectroscopic studies of light-harvesting by pigment-reconstituted peridinin-chlorophyll-proteins at cryogenic temperatures. Photosynthesis Research, 2007, 90, 5-15.                              | 2.9 | 24        |
| 78 | Excited-State Dynamics of Monomeric and Aggregated Carotenoid 8′-Apo-β-carotenal. Journal of<br>Physical Chemistry A, 2012, 116, 12330-12338.                                                              | 2.5 | 24        |
| 79 | How carotenoid distortions may determine optical properties: lessons from the Orange Carotenoid<br>Protein. Physical Chemistry Chemical Physics, 2019, 21, 23187-23197.                                    | 2.8 | 23        |
| 80 | Role of B800 in Carotenoidâ^'Bacteriochlorophyll Energy and Electron Transfer in LH2 Complexes from the Purple BacteriumRhodobactersphaeroides. Journal of Physical Chemistry B, 2007, 111, 7422-7431.     | 2.6 | 22        |
| 81 | Excited-state dynamics of astaxanthin aggregates. Chemical Physics Letters, 2013, 568-569, 21-25.                                                                                                          | 2.6 | 22        |
| 82 | Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix.<br>Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148120.                                        | 1.0 | 22        |
| 83 | Role of Carotenoids in Light-Harvesting Processes in an Antenna Protein from the Chromophyte<br><i>Xanthonema debile</i> . Journal of Physical Chemistry B, 2012, 116, 8880-8889.                          | 2.6 | 21        |
| 84 | Ultrafast Dynamics of Long Homologues of Carotenoid Zeaxanthin. Journal of Physical Chemistry A,<br>2015, 119, 11304-11312.                                                                                | 2.5 | 21        |
| 85 | Structural and spectroscopic characterization of HCP2. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 414-424.                                                                                 | 1.0 | 21        |
| 86 | Ultrafast dynamics of hydrophilic carbonyl carotenoids – Relation between structure and excited-state properties in polar solvents. Chemical Physics, 2010, 373, 56-64.                                    | 1.9 | 20        |
| 87 | Energy Transfer in the Peridinin-Chlorophyll Protein Complex Reconstituted with Mixed Chlorophyll<br>Sites. Biophysical Journal, 2008, 94, 3198-3207.                                                      | 0.5 | 19        |
| 88 | X-ray Crystal Structure and Time-Resolved Spectroscopy of the Blue Carotenoid Violerythrin. Journal of Physical Chemistry B, 2010, 114, 8760-8769.                                                         | 2.6 | 19        |
| 89 | Charge transfer in porphyrin–calixarene complexes: ultrafast kinetics, cyclic voltammetry, and DFT calculations. Physical Chemistry Chemical Physics, 2011, 13, 6947.                                      | 2.8 | 19        |
| 90 | Reversible Capture of Small Molecules On Bimetallaborane Clusters: Synthesis, Structural<br>Characterization, and Photophysical Aspects. Inorganic Chemistry, 2011, 50, 7511-7523.                         | 4.0 | 19        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica. PLoS Biology, 2017, 15, e2003943.                                                                                         | 5.6  | 19        |
| 92  | Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light<br>harvesting complex of Chromera velia. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837,<br>1748-1755.                  | 1.0  | 18        |
| 93  | A Protein Environment-Modulated Energy Dissipation Channel in LHCII Antenna Complex. IScience, 2020, 23, 101430.                                                                                                                  | 4.1  | 18        |
| 94  | Structural analysis of a new carotenoid-binding protein: the C-terminal domain homolog of the OCP.<br>Scientific Reports, 2020, 10, 15564.                                                                                        | 3.3  | 18        |
| 95  | Equilibration Dependence of Fucoxanthin S <sub>1</sub> and ICT Signatures on Polarity, Proticity, and<br>Temperature by Multipulse Femtosecond Absorption Spectroscopy. Journal of Physical Chemistry B,<br>2018, 122, 7264-7276. | 2.6  | 17        |
| 96  | 2.4-Ã structure of the double-ring <i>Gemmatimonas phototrophica</i> photosystem. Science Advances, 2022, 8, eabk3139.                                                                                                            | 10.3 | 16        |
| 97  | Carotenoid Charge Transfer States and Their Role in Energy Transfer Processes in LH1–RC Complexes from Aerobic Anoxygenic Phototrophs. Journal of Physical Chemistry B, 2013, 117, 10987-10999.                                   | 2.6  | 15        |
| 98  | Different Response of Carbonyl Carotenoids to Solvent Proticity Helps To Estimate Structure of the<br>Unknown Carotenoid from <i>Chromera velia</i> . Journal of Physical Chemistry B, 2015, 119,<br>12653-12663.                 | 2.6  | 15        |
| 99  | Plant LHC-like proteins show robust folding and static non-photochemical quenching. Nature Communications, 2021, 12, 6890.                                                                                                        | 12.8 | 15        |
| 100 | Ultrafast multi-pulse transient absorption spectroscopy of fucoxanthin chlorophyll a protein from<br>Phaeodactylum tricornutum. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 357-365.                               | 1.0  | 14        |
| 101 | Excited-State Properties of Canthaxanthin in Cyanobacterial Carotenoid-Binding Proteins HCP2 and HCP3. Journal of Physical Chemistry B, 2020, 124, 4896-4905.                                                                     | 2.6  | 14        |
| 102 | Optimal control of peridinin excited-state dynamics. Chemical Physics, 2010, 373, 129-136.                                                                                                                                        | 1.9  | 13        |
| 103 | Low-temperature time-resolved spectroscopic study of the major light-harvesting complex of Amphidinium carterae. Photosynthesis Research, 2013, 117, 257-265.                                                                     | 2.9  | 13        |
| 104 | Spectroscopic Properties of Violaxanthin and Lutein Triplet States in LHCII are Independent of Carotenoid Composition. Journal of Physical Chemistry B, 2019, 123, 9312-9320.                                                     | 2.6  | 13        |
| 105 | A Series of Ultra-Efficient Blue Borane Fluorophores. Inorganic Chemistry, 2020, 59, 17058-17070.                                                                                                                                 | 4.0  | 13        |
| 106 | Trivial Excitation Energy Transfer to Carotenoids Is an Unlikely Mechanism for Non-photochemical<br>Quenching in LHCII. Frontiers in Plant Science, 2021, 12, 797373.                                                             | 3.6  | 13        |
| 107 | Energy Transfer from Carotenoids to Bacteriochlorophylls. Advances in Photosynthesis and Respiration, 2009, , 213-230.                                                                                                            | 1.0  | 12        |
| 108 | Four-wave-mixing spectroscopy of peridinin in solution and in the peridinin–chlorophyll-a protein.<br>Chemical Physics, 2010, 373, 15-22.                                                                                         | 1.9  | 12        |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Carotenoids in Energy Transfer and Quenching Processes in Pcb and Pcbâ^'PS I Complexes from Prochlorothrix hollandica. Journal of Physical Chemistry B, 2010, 114, 9275-9282.               | 2.6 | 10        |
| 110 | Carotenoid response to retinal excitation and photoisomerization dynamics in xanthorhodopsin.<br>Chemical Physics Letters, 2011, 516, 96-101.                                               | 2.6 | 10        |
| 111 | Nonconjugated Acyloxy Group Deactivates the Intramolecular Charge-Transfer State in the<br>Carotenoid Fucoxanthin. Journal of Physical Chemistry B, 2018, 122, 2922-2930.                   | 2.6 | 10        |
| 112 | Transient Absorption of Chlorophylls and Carotenoids after Two-Photon Excitation of LHCII. Journal of Physical Chemistry Letters, 2021, 12, 3176-3181.                                      | 4.6 | 10        |
| 113 | Hole-burning study of excited energy transfer in the antenna protein CP47 of Synechocystis sp. PCC 6803 mutant H114Q. Journal of Luminescence, 1997, 72-74, 600-602.                        | 3.1 | 9         |
| 114 | Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyllÂc<br>with astaxanthin. Photosynthesis Research, 2012, 111, 193-204.                       | 2.9 | 9         |
| 115 | Effect of Isomerization on Excited-State Dynamics of Carotenoid Fucoxanthin. Journal of Physical Chemistry B, 2017, 121, 4438-4447.                                                         | 2.6 | 9         |
| 116 | Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex.<br>Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 111-120.                       | 1.0 | 9         |
| 117 | Photophysics of deinoxanthin, the keto-carotenoid bound to the main S-layer unit of Deinococcus radiodurans. Photochemical and Photobiological Sciences, 2020, 19, 495-503.                 | 2.9 | 9         |
| 118 | Intramolecular charge-transfer state of carotenoids siphonaxanthin and siphonein: function of non-conjugated acyl-oxy group. Photosynthesis Research, 2020, 144, 127-135.                   | 2.9 | 8         |
| 119 | The robustness of the terminal emitter site in major LHCII complexes controls xanthophyll function during photoprotection. Photochemical and Photobiological Sciences, 2020, 19, 1308-1318. | 2.9 | 8         |
| 120 | Excitedâ€State Evolution of Keto arotenoids after Excess Energy Excitation in the UV Region.<br>ChemPhysChem, 2021, 22, 471-480.                                                            | 2.1 | 7         |
| 121 | Carotenoid–chlorophyll energy transfer in the fucoxanthin–chlorophyll complex binding a<br>fucoxanthin acyloxy derivative. Faraday Discussions, 2019, 216, 460-475.                         | 3.2 | 6         |
| 122 | Photophysical Properties of Xanthophylls in Carotenoproteins from Human Retina¶. Photochemistry and Photobiology, 2003, 78, 138-145.                                                        | 2.5 | 5         |
| 123 | Spectroscopic investigation of a brightly colored psittacofulvin pigment from parrot feathers.<br>Chemical Physics Letters, 2016, 648, 195-199.                                             | 2.6 | 5         |
| 124 | Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation.<br>Chemical Physics Letters, 2017, 683, 448-453.                                             | 2.6 | 5         |
| 125 | Energy transfer pathways in the CAC light-harvesting complex of Rhodomonas salina. Biochimica Et<br>Biophysica Acta - Bioenergetics, 2020, 1861, 148280.                                    | 1.0 | 5         |
| 126 | Understanding Carotenoid Dynamics via the Vibronic Energy Relaxation Approach. Journal of Physical<br>Chemistry B, 2022, 126, 3985-3994.                                                    | 2.6 | 5         |

Tomas Polivka

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Spectroscopic properties of the triple bond carotenoid alloxanthin. Chemical Physics Letters, 2016, 653, 167-172.                                                                                                               | 2.6 | 4         |
| 128 | Photo-protection/photo-damage in natural systems: general discussion. Faraday Discussions, 2019, 216, 538-563.                                                                                                                  | 3.2 | 4         |
| 129 | Direct observation of the S1 level of the carotenoid spheroidene using near-infrared femtosecond spectroscopy. Springer Series in Chemical Physics, 2001, , 668-670.                                                            | 0.2 | 4         |
| 130 | Laser Induced Hole Filling of Bacteriochlorophyll <i>d</i> Monomers of Green Sulfur<br>Photosynthetic Bacteria Antennae. Molecular Crystals and Liquid Crystals, 1996, 291, 201-207.                                            | 0.3 | 3         |
| 131 | Time-resolved two-photon spectroscopy of carotenoids. Chemical Physics, 2019, 522, 171-177.                                                                                                                                     | 1.9 | 3         |
| 132 | Spectroscopy and excited state dynamics of nearly infinite polyenes. Physical Chemistry Chemical Physics, 2020, 22, 17867-17879.                                                                                                | 2.8 | 3         |
| 133 | Hole-burning spectroscopy of photosynthetically active pigments of green sulphur photosynthetic<br>bacteria. Journal of Luminescence, 1997, 72-74, 593-594.                                                                     | 3.1 | 2         |
| 134 | Ultrafast Dynamics of Carotenoid Excited States — From Solution to Natural and Artificial Systems.<br>ChemInform, 2004, 35, no.                                                                                                 | 0.0 | 2         |
| 135 | Carotenoid to bacteriochlorophyll energy transfer in the RC–LH1–PufX complex from Rhodobacter sphaeroides containing the extended conjugation keto-carotenoid diketospirilloxanthin. Photosynthesis Research, 2018, 135, 33-43. | 2.9 | 2         |
| 136 | UV Excitation of Carotenoid Binding Proteins OCP and HCP: Excitedâ€State Dynamics and Product<br>Formation. ChemPhotoChem, 2022, 6, .                                                                                           | 3.0 | 2         |
| 137 | Photosynthetic Light-Harvesting. Biological and Medical Physics Series, 2008, , 95-115.                                                                                                                                         | 0.4 | 2         |
| 138 | Energy transfer in light-harvesting Zn porphyrin dendrimers. , 2004, , 495-498.                                                                                                                                                 |     | 2         |
| 139 | Persistent hole burning and femtosecond pump-probe absorption spectroscopy of green sulphur photosynthetic bacteria antennae. Journal of Luminescence, 1998, 76-77, 322-326.                                                    | 3.1 | 1         |
| 140 | Excited state dynamics in light harvesting materials (in honor of Villy Sundström). Chemical Physics,<br>2009, 357, 1-3.                                                                                                        | 1.9 | 1         |
| 141 | Carotenoid photophysics. Chemical Physics, 2010, 373, 1.                                                                                                                                                                        | 1.9 | 1         |
| 142 | Structure-Function Relationship in Peridinin-Chlorophyll Proteins. Advances in Photosynthesis and Respiration, 2014, , 39-58.                                                                                                   | 1.0 | 1         |
| 143 | Tuning the Triplet–Triplet Energy Transfer Between Phthalocyanine and Carotenoid by Methyl Groups<br>on the Conjugated Chain. Photochemistry and Photobiology, 2019, 95, 453-454.                                               | 2.5 | 1         |
| 144 | Carotenoid Excited States-Photophysics, Ultrafast Dynamics and Photosynthetic Functions. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2005, , 187-219.                                                    | 0.1 | 1         |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Red Emission From LH2 at Low Temperature: Where Does it Come From?. , 1998, , 33-36.                                                                                            |     | 1         |
| 146 | Hole Burning and Low Temperature Absorption and Fluorescence Spectroscopy of Algae Affected by<br>Uv-B Stress. Molecular Crystals and Liquid Crystals, 1996, 291, 103-109.      | 0.3 | 0         |
| 147 | Hole-Burning Study of Energy Transfer in Antenna Proteins of Dunaliella Tertiolecta Affected by<br>Iron-Limitation. Molecular Crystals and Liquid Crystals, 1996, 291, 111-117. | 0.3 | Ο         |
| 148 | Low-temperature spectroscopy of algae affected by UV-B stress absorption fluorescence and hole-burning. Journal of Luminescence, 1997, 72-74, 587-588.                          | 3.1 | 0         |
| 149 | Ultra-broadband OPA of supercontinuum for ELI front end. Proceedings of SPIE, 2011, , .                                                                                         | 0.8 | Ο         |
| 150 | Interaction of Antenna Carotenoid and Retinal in the Light-Driven Pumps of Salinibacter Ruber and<br>Gloeobacter Violaceus. Biophysical Journal, 2013, 104, 544a.               | 0.5 | 0         |
| 151 | LIGHT DRIVEN MULTISTEP ELECTRON TRANSFER IN A TYROSINE-RUTHENIUM-COMPLEX ANCHORED TO <font>TIO</font> <sub>2</sub> NANOPARTICLES. , 2002, , .                                   |     | 0         |
| 152 | Excited state dynamics of the carotenoid peridinin. , 2004, , 445-452.                                                                                                          |     | 0         |
| 153 | Energy Transfer Dynamics in Zn-Porphyrin-Appended Dendrimers. , 2006, , 113-117.                                                                                                |     | Ο         |
| 154 | Dynamics of Energy Transfer in the LH2 Antenna Complex of the Purple Bacterium Rhodobacter sphaeroides. Springer Series in Chemical Physics, 1998, , 669-671.                   | 0.2 | 0         |