List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5350211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ΔNp63 regulates a common landscape of enhancer associated genes in non-small cell lung cancer. Nature Communications, 2022, 13, 614.	12.8	13
2	miR-181a Promotes Multiple Protumorigenic Functions by Targeting TGFβR3. Journal of Investigative Dermatology, 2022, 142, 1956-1965.e2.	0.7	4
3	p63, a key regulator of Ago2, links to the microRNA-144 cluster. Cell Death and Disease, 2022, 13, 397.	6.3	3
4	Hsp70 acts as a fine-switch that controls E3 ligase CHIP-mediated TAp63 and ΔNp63 ubiquitination and degradation. Nucleic Acids Research, 2021, 49, 2740-2758.	14.5	16
5	Mutant p53s and chromosome 19 microRNA cluster overexpression regulate cancer testis antigen expression and cellular transformation in hepatocellular carcinoma. Scientific Reports, 2021, 11, 12673.	3.3	4
6	Elective neck dissection versus observation in patients with head and neck cutaneous squamous cell carcinoma. Cancer, 2021, 127, 4413-4420.	4.1	7
7	The Landmark Discovery That Paved the Way to a Mechanistic Understanding of P53 Gain of Function and Personalized Medicine. Cancer Research, 2021, 81, 4394-4396.	0.9	0
8	The p53 family reaches the final frontier: the variegated regulation of the dark matter of the genome by the p53 family in cancer. RNA Biology, 2020, 17, 1636-1647.	3.1	5
9	Inducible knockout of â^†Np63 alters cell polarity and metabolism during pubertal mammary gland development. FEBS Letters, 2020, 594, 973-985.	2.8	7
10	p63 and Its Target Follistatin Maintain Salivary Gland Stem/Progenitor Cell Function through TGF-β/Activin Signaling. IScience, 2020, 23, 101524.	4.1	22
11	Pan-cancer analysis reveals TAp63-regulated oncogenic lncRNAs that promote cancer progression through AKT activation. Nature Communications, 2020, 11, 5156.	12.8	12
12	Regulation of MYO18B mRNA by a network of C19MC miRNA-520G, IFN-γ, CEBPB, p53 and bFGF in hepatocellular carcinoma. Scientific Reports, 2020, 10, 12371.	3.3	10
13	KMT2D Deficiency Impairs Super-Enhancers to Confer a Glycolytic Vulnerability in Lung Cancer. Cancer Cell, 2020, 37, 599-617.e7.	16.8	137
14	Spatiotemporal Regulation of î"Np63 by TGFβ-Regulated miRNAs Is Essential for Cancer Metastasis. Cancer Research, 2020, 80, 2833-2847.	0.9	19
15	TAp63-Regulated miRNAs Suppress Cutaneous Squamous Cell Carcinoma through Inhibition of a Network of Cell-Cycle Genes. Cancer Research, 2020, 80, 2484-2497.	0.9	16
16	The genomic landscape of undifferentiated embryonal sarcoma of the liver is typified by C19MC structural rearrangement and overexpression combined with TP53 mutation or loss. PLoS Genetics, 2020, 16, e1008642.	3.5	18
17	Activating p53 family member TAp63: A novel therapeutic strategy for targeting p53â€altered tumors. Cancer, 2019, 125, 2409-2422.	4.1	15
18	Beware of thy neighbor: Senescent cancer cells feast on adjacent cells to persist. Journal of Cell Biology, 2019, 218, 3535-3536.	5.2	1

#	Article	IF	CITATIONS
19	The Rbm38-p63 feedback loop is critical for tumor suppression and longevity. Oncogene, 2018, 37, 2863-2872.	5.9	16
20	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Reports, 2018, 23, 194-212.e6.	6.4	245
21	p63 Silencing induces reprogramming of cardiac fibroblasts into cardiomyocyte-like cells. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 556-565.e1.	0.8	12
22	Distinct TP63 Isoform-Driven Transcriptional Signatures Predict Tumor Progression and Clinical Outcomes. Cancer Research, 2018, 78, 451-462.	0.9	22
23	miR-205 Regulates Basal Cell Identity and Stem Cell Regenerative Potential During Mammary Reconstitution. Stem Cells, 2018, 36, 1875-1889.	3.2	11
24	Chromosome 19 miRNA cluster and CEBPB expression specifically mark and potentially drive triple negative breast cancers. PLoS ONE, 2018, 13, e0206008.	2.5	41
25	HP1Î ³ Promotes Lung Adenocarcinoma by Downregulating the Transcription-Repressive Regulators NCOR2 and ZBTB7A. Cancer Research, 2018, 78, 3834-3848.	0.9	63
26	MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes. Molecular Cell, 2018, 70, 825-841.e6.	9.7	123
27	N-BLR, a primate-specific non-coding transcript leads to colorectal cancer invasion and migration. Genome Biology, 2017, 18, 98.	8.8	97
28	p73 is required for appropriate BMP-induced mesenchymal-to-epithelial transition during somatic cell reprogramming. Cell Death and Disease, 2017, 8, e3034-e3034.	6.3	16
29	The p53 family orchestrates the regulation of metabolism: physiological regulation and implications for cancer therapy. British Journal of Cancer, 2017, 116, 149-155.	6.4	71
30	p53 and TAp63 participate in the recombination-dependent pachytene arrest in mouse spermatocytes. PLoS Genetics, 2017, 13, e1006845.	3.5	50
31	JAK2-binding long noncoding RNA promotes breast cancer brain metastasis. Journal of Clinical Investigation, 2017, 127, 4498-4515.	8.2	177
32	Commentary on "Apoptosis, p53, and Tumor Cell Sensitivity to Anticancer Agents― Cancer Research, 2016, 76, 6763-6764.	0.9	4
33	Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nature Communications, 2016, 7, 12601.	12.8	123
34	Dysfunctional telomeres induce p53â€dependent and independent apoptosis to compromise cellular proliferation and inhibit tumor formation. Aging Cell, 2016, 15, 646-660.	6.7	27
35	MEK Is a Therapeutic and Chemopreventative Target in Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2016, 136, 1920-1924.	0.7	12
36	ΔNp63/DGCR8-Dependent MicroRNAs Mediate Therapeutic Efficacy of HDAC Inhibitors in Cancer. Cancer Cell, 2016, 29, 874-888.	16.8	32

#	Article	IF	CITATIONS
37	Unifying the p73 knockout phenotypes: TAp73 orchestrates multiciliogenesis. Genes and Development, 2016, 30, 1253-1254.	5.9	7
38	Novel therapeutic interventions for p53-altered tumors through manipulation of its family members, p63 and p73. Cell Cycle, 2016, 15, 164-171.	2.6	32
39	Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma. Neuro-Oncology, 2015, 17, 1463-1473.	1.2	61
40	IAPP-driven metabolic reprogramming induces regression of p53-deficient tumours in vivo. Nature, 2015, 517, 626-630.	27.8	117
41	p53/p63/p73 in the Epidermis in Health and Disease. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015248-a015248.	6.2	96
42	Copy Number Gain of hsa-miR-569 at 3q26.2 Leads to Loss of TP53INP1 and Aggressiveness of Epithelial Cancers. Cancer Cell, 2014, 26, 863-879.	16.8	46
43	Induced multipotency in adult keratinocytes through down-regulation of <i>ΔNp63</i> or <i>DGCR8</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E572-81.	7.1	61
44	Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress. Free Radical Biology and Medicine, 2013, 65, 26-37.	2.9	36
45	p63 steps into the limelight: crucial roles in the suppression of tumorigenesis and metastasis. Nature Reviews Cancer, 2013, 13, 136-143.	28.4	123
46	The p63 Protein Isoform ΔNp63α Inhibits Epithelial-Mesenchymal Transition in Human Bladder Cancer Cells. Journal of Biological Chemistry, 2013, 288, 3275-3288.	3.4	116
47	The family that eats together stays together: new p53 family transcriptional targets in autophagy. Genes and Development, 2013, 27, 971-974.	5.9	27
48	BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling. ELife, 2013, 2, e00969.	6.0	67
49	The p53 family grows old. Genes and Development, 2012, 26, 1997-2000.	5.9	16
50	TAp63 Is a Master Transcriptional Regulator of Lipid and Glucose Metabolism. Cell Metabolism, 2012, 16, 511-525.	16.2	96
51	Stem Cell Proliferation in the Skin: α-Catenin Takes Over the Hippo Pathway. Science Signaling, 2011, 4, pe34.	3.6	15
52	TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature, 2010, 467, 986-990.	27.8	386
53	p63 and p73 Transcriptionally Regulate Genes Involved in DNA Repair. PLoS Genetics, 2009, 5, e1000680.	3.5	120
54	TAp63 Prevents Premature Aging by Promoting Adult Stem Cell Maintenance. Cell Stem Cell, 2009, 5, 64-75.	11.1	228

#	Article	IF	CITATIONS
55	The Roles of p63 in Cancer. Cell Cycle, 2007, 6, 300-304.	2.6	97
56	Tumor predisposition in mice mutant for p63 and p73: Evidence for broader tumor suppressor functions for the p53 family. Cancer Cell, 2005, 7, 363-373.	16.8	455
57	p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature, 2002, 416, 560-564.	27.8	775
58	Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature, 2000, 407, 645-648.	27.8	656