
Yongkang Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5348648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantifying the major drivers for the expanding lakes in the interior Tibetan Plateau. Science Bulletin, 2022, 67, 474-478.	9.0	75
2	Mapping South America's Drylands through Remote Sensing—A Review of the Methodological Trends and Current Challenges. Remote Sensing, 2022, 14, 736.	4.0	6
3	An assessment of potential climate impact during 1948–2010 using historical land use land cover change maps. International Journal of Climatology, 2021, 41, 295-315.	3.5	9
4	Vegetation greening in China and its effect on summer regional climate. Science Bulletin, 2021, 66, 13-17.	9.0	41
5	Modeling Snow Ablation over the Mountains of the Western United States: Patterns and Controlling Factors. Journal of Hydrometeorology, 2021, 22, 297-311.	1.9	9
6	Impact of frozen soil processes on soil thermal characteristics at seasonal to decadal scales over the Tibetan Plateau and North China. Hydrology and Earth System Sciences, 2021, 25, 2089-2107.	4.9	7
7	Simulation of summer climate over Central Asia shows high sensitivity to different land surface schemes in WRF. Climate Dynamics, 2021, 57, 2249-2268.	3.8	8
8	Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction Project, Phase I (LS4P-I): organization and experimental design. Geoscientific Model Development, 2021, 14, 4465-4494.	3.6	31
9	Numerical Investigation and Uncertainty Analysis of Eastern China's Large-Scale Urbanization Effect on Regional Climate. Journal of Meteorological Research, 2021, 35, 1023-1040.	2.4	6
10	Modeling the short-term fire effects on vegetation dynamics and surface energy in southern Africa using the improved SSiB4/TRIFFID-Fire model. Geoscientific Model Development, 2021, 14, 7639-7657.	3.6	4
11	Effects of Dynamic Vegetation on Global Climate Simulation Using the NCEP GFS and SSiB4/TRIFFID. Journal of Meteorological Research, 2021, 35, 1041-1056.	2.4	1
12	Investigation of the Variability of Near‣urface Temperature Anomaly and Its Causes Over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032800.	3.3	14
13	Expansion of the Sahara Desert and shrinking of frozen land of the Arctic. Scientific Reports, 2020, 10, 4109.	3.3	14
14	Assessing Global and Regional Effects of Reconstructed Land-Use and Land-Cover Change on Climate since 1950 Using a Coupled Land–Atmosphere–Ocean Model. Journal of Climate, 2020, 33, 8997-9013.	3.2	27
15	Modeling long-term fire impact on ecosystem characteristics and surface energy using a process-based vegetation–fire model SSiB4/TRIFFID-Fire v1.0. Geoscientific Model Development, 2020, 13, 6029-6050.	3.6	6
16	Evaluation of multi-decadal UCLA-CFSv2 simulation and impact of interactive atmospheric-ocean feedback on global and regional variability. Climate Dynamics, 2019, 52, 3683-3707.	3.8	12
17	On the effects of wildfires on precipitation in Southern Africa. Climate Dynamics, 2019, 52, 951-967.	3.8	27
18	Infiltration from the Pedon to Global Grid Scales: An Overview and Outlook for Land Surface Modeling. Vadose Zone Journal, 2019, 18, 1-53.	2.2	56

#	Article	IF	CITATIONS
19	Climate Change Trends and Impacts on Vegetation Greening Over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7540-7552.	3.3	109
20	Global vegetation variability and its response to elevated CO ₂ , global warming, and climate variability – a study using the offline SSiB4/TRIFFID model and satellite data. Earth System Dynamics, 2019, 10, 9-29.	7.1	28
21	Changes in NDVI and human population in protected areas on the Tibetan Plateau. Arctic, Antarctic, and and Alpine Research, 2019, 51, 428-439.	1.1	19
22	Dynamical downscaling the impact of spring Western US land surface temperature on the 2015 flood extremes at the Southern Great Plains: effect of domain choice, dynamic cores and land surface parameterization. Climate Dynamics, 2019, 53, 1039-1061.	3.8	22
23	An Arcticâ€Tibetan Connection on Subseasonal to Seasonal Time Scale. Geophysical Research Letters, 2019, 46, 2790-2799.	4.0	35
24	Assessing aerosol indirect effect on clouds and regional climate of East/South Asia and West Africa using NCEP GFS. Climate Dynamics, 2019, 52, 5759-5774.	3.8	16
25	Recent Third Pole's Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bulletin of the American Meteorological Society, 2019, 100, 423-444.	3.3	590
26	Interactions and Feedbacks Between Climate and Dryland Vegetations. , 2019, , 139-169.		2
27	Satellite Chlorophyll Fluorescence and Soil Moisture Observations Lead to Advances in the Predictive Understanding of Global Terrestrial Coupled Carbonâ€Water Cycles. Global Biogeochemical Cycles, 2018, 32, 360-375.	4.9	42
28	Missing pieces to modeling the Arctic-Boreal puzzle. Environmental Research Letters, 2018, 13, 020202.	5.2	61
29	Spring Land Surface and Subsurface Temperature Anomalies and Subsequent Downstream Late Spring‣ummer Droughts/Floods in North America and East Asia. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5001-5019.	3.3	65
30	Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales. Nature Communications, 2018, 9, 4243.	12.8	95
31	Validating the dynamic downscaling ability of WRF for East Asian summer climate. Theoretical and Applied Climatology, 2017, 128, 241-253.	2.8	5
32	A GCM investigation of impact of aerosols on the precipitation in Amazon during the dry to wet transition. Climate Dynamics, 2017, 48, 2393-2404.	3.8	8
33	Development of a land surface model with coupled snow and frozen soil physics. Water Resources Research, 2017, 53, 5085-5103.	4.2	76
34	Fireâ€induced albedo change and surface radiative forcing in subâ€5aharan Africa savanna ecosystems: Implications for the energy balance. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6186-6201.	3.3	28
35	Vegetation Responses to Climate Variability in the Northern Arid to Sub-Humid Zones of Sub-Saharan Africa. Remote Sensing, 2016, 8, 910.	4.0	39
36	Stem–root flow effect on soil–atmosphere interactions and uncertainty assessments. Hydrology and Earth System Sciences, 2016, 20, 1509-1522.	4.9	0

#	Article	lF	CITATIONS
37	Spring land temperature anomalies in northwestern US and the summer drought over Southern Plains and adjacent areas. Environmental Research Letters, 2016, 11, 044018.	5.2	26
38	The regional impact of Land-Use Land-cover Change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project. Climate Dynamics, 2016, 47, 3547-3573.	3.8	31
39	Implementation and evaluation of a generalized radiative transfer scheme within canopy in the soilâ€vegetationâ€atmosphere transfer (SVAT) model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,145.	3.3	8
40	Influence of the Madden–Julian oscillation on Tibetan Plateau snow cover at the intraseasonal time-scale. Scientific Reports, 2016, 6, 30456.	3.3	17
41	Variability and predictability of West African monsoon on seasonal and decadal scales. Climate Dynamics, 2016, 47, 3391-3392.	3.8	Ο
42	Sensitivity of a regional climate model to land surface parameterization schemes for East Asian summer monsoon simulation. Climate Dynamics, 2016, 47, 2293-2308.	3.8	34
43	West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II). Climate Dynamics, 2016, 47, 3517-3545.	3.8	39
44	A GCM investigation of dust aerosol impact on the regional climate of North Africa and South/East Asia. Climate Dynamics, 2016, 46, 2353-2370.	3.8	38
45	Carbon and energy fluxes in cropland ecosystems: a model-data comparison. Biogeochemistry, 2016, 129, 53-76.	3.5	24
46	Modeling the potential contribution of land cover changes to the late twentieth century Sahel drought using a regional climate model: impact of lateral boundary conditions. Climate Dynamics, 2016, 47, 3457-3477.	3.8	25
47	Impact of burned areas on the northern African seasonal climate from the perspective of regional modeling. Climate Dynamics, 2016, 47, 3393-3413.	3.8	19
48	Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S Journal of Geophysical Research D: Atmospheres, 2015, 120, 3228-3248.	3.3	45
49	Integrated simulation of snow and glacier melt in water and energy balanceâ€based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4889-4919.	3.3	94
50	Investigation of North American vegetation variability under recent climate: A study using the SSiB4/TRIFFID biophysical/dynamic vegetation model. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1300-1321.	3.3	18
51	Variability and Predictability of West African Droughts: A Review on the Role of Sea Surface Temperature Anomalies. Journal of Climate, 2015, 28, 4034-4060.	3.2	148
52	OPTIMIZING SNOWFALL CORRECTION FACTOR FOR RADAR-AMEDAS PRECIPITATION USING DISTRIBUTED SNOW MODEL (WEB-DHM-S) AND MODIS SNOW COVER DATA. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2014, 70, I_223-I_228.	0.1	2
53	Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote-sensing data. Hydrology and Earth System Sciences, 2014, 18, 747-761.	4.9	36
54	The observed and simulated major summer climate features in northwest China and their sensitivity to land surface processes. Journal of Meteorological Research, 2014, 28, 836-848.	2.4	3

#	Article	IF	CITATIONS
55	Water Balance in the Amazon Basin from a Land Surface Model Ensemble. Journal of Hydrometeorology, 2014, 15, 2586-2614.	1.9	66
56	Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model. Climate Dynamics, 2014, 43, 2765-2775.	3.8	27
57	A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmospheric Research, 2014, 147-148, 68-85.	4.1	178
58	Validating a regional climate model's downscaling ability for East Asian summer monsoonal interannual variability. Climate Dynamics, 2013, 41, 2411-2426.	3.8	39
59	Dynamic downscaling of 22-year CFS winter seasonal hindcasts with the UCLA-ETA regional climate model over the United States. Climate Dynamics, 2013, 41, 255-275.	3.8	29
60	Sensitivity of Global Tropical Climate to Land Surface Processes: Mean State and Interannual Variability. Journal of Climate, 2013, 26, 1818-1837.	3.2	9
61	On the Connection between Continental-Scale Land Surface Processes and the Tropical Climate in a Coupled Ocean–Atmosphere–Land System. Journal of Climate, 2013, 26, 9006-9025.	3.2	9
62	Potential impacts on regional climate due to land degradation in the Guizhou Karst Plateau of China. Environmental Research Letters, 2013, 8, 044037.	5.2	12
63	Quasiâ€decadal signals of Sahel rainfall and West African monsoon since the midâ€twentieth century. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,587.	3.3	14
64	Review of Recent Developments and the Future Prospective in West African Atmosphere/Land Interaction Studies. International Journal of Geophysics, 2012, 2012, 1-12.	1.1	18
65	Modeling the Spatial Distribution of Snow Cover in the Dudhkoshi Region of the Nepal Himalayas. Journal of Hydrometeorology, 2012, 13, 204-222.	1.9	54
66	The impact of spring subsurface soil temperature anomaly in the western U.S. on North American summer precipitation: A case study using regional climate model downscaling. Journal of Geophysical Research, 2012, 117, .	3.3	51
67	Terrestrial biosphere models need better representation of vegetation phenology: results from the <scp>N</scp> orth <scp>A</scp> merican <scp>C</scp> arbon <scp>P</scp> rogram <scp>S</scp> ite <scp>S</scp> ynthesis. Global Change Biology, 2012, 18, 566-584.	9.5	583
68	Simulating cold season snowpack: Impacts of snow albedo and multi-layer snow physics. Climatic Change, 2011, 109, 95-117.	3.6	319
69	Impact of land surface processes on the South American warm season climate. Climate Dynamics, 2011, 37, 187-203.	3.8	25
70	Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model. Advances in Atmospheric Sciences, 2011, 28, 1077-1098.	4.3	41
71	Assessing the dynamicâ€downscaling ability over South America using the intensityâ€scale verification technique. International Journal of Climatology, 2011, 31, 1205-1221.	3.5	37
72	The West African climate system: a review of the AMMA model inter omparison initiatives. Atmospheric Science Letters, 2011, 12, 116-122.	1.9	57

#	Article	IF	CITATIONS
73	Evaluation of the WAMME model surface fluxes using results from the AMMA land-surface model intercomparison project. Climate Dynamics, 2010, 35, 127-142.	3.8	29
74	The WAMME regional model intercomparison study. Climate Dynamics, 2010, 35, 175-192.	3.8	84
75	Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment. Climate Dynamics, 2010, 35, 3-27.	3.8	123
76	Improving the snow physics of WEB-DHM and its point evaluation at the SnowMIP sites. Hydrology and Earth System Sciences, 2010, 14, 2577-2594.	4.9	59
77	Simulated impacts of land cover change on summer climate in the Tibetan Plateau. Environmental Research Letters, 2010, 5, 015102.	5.2	31
78	Global and Seasonal Assessment of Interactions between Climate and Vegetation Biophysical Processes: A GCM Study with Different Land–Vegetation Representations. Journal of Climate, 2010, 23, 1411-1433.	3.2	82
79	Analyses and development of a hierarchy of frozen soil models for cold region study. Journal of Geophysical Research, 2010, 115, .	3.3	41
80	Analysis of Climate and Vegetation Characteristics along the Savanna-Desert Ecotone in Mali Using MODIS Data. GIScience and Remote Sensing, 2009, 46, 424-450.	5.9	13
81	The AMMA Land Surface Model Intercomparison Project (ALMIP). Bulletin of the American Meteorological Society, 2009, 90, 1865-1880.	3.3	165
82	Variabilities of the spring river runoff system in East China and their relations to precipitation and sea surface temperature. International Journal of Climatology, 2009, 29, 1381-1394.	3.5	56
83	Evaluation of forest snow processes models (SnowMIP2). Journal of Geophysical Research, 2009, 114, .	3.3	290
84	Assessment of Dynamic Downscaling of the Continental U.S. Regional Climate Using the Eta/SSiB Regional Climate Model. Journal of Climate, 2007, 20, 4172-4193.	3.2	80
85	Impact Assessment of Satellite-Derived Leaf Area Index Datasets Using a General Circulation Model. Journal of Climate, 2007, 20, 993-1015.	3.2	37
86	Development and Testing of a Frozen Soil Parameterization for Cold Region Studies. Journal of Hydrometeorology, 2007, 8, 690-701.	1.9	80
87	Numerical Investigation of the Impact of Vegetation Indices on the Variability of West African Summer Monsoon. Journal of the Meteorological Society of Japan, 2007, 85A, 363-383.	1.8	13
88	Impact of different initial soil moisture fields on Eta model weather forecasts for South America. Journal of Geophysical Research, 2006, 111, .	3.3	22
89	Investigation of seasonal prediction of the South American regional climate using the nested model system. Journal of Geophysical Research, 2006, 111, .	3.3	13
90	GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. Journal of Hydrometeorology, 2006, 7, 590-610.	1.9	616

#	Article	IF	CITATIONS
91	Soil moisture regulates the biological response of elevated atmospheric CO2 concentrations in a coupled atmosphere biosphere model. Global and Planetary Change, 2006, 54, 94-108.	3.5	17
92	Evidence for carbon dioxide and moisture interactions from the leaf cell up to global scales: Perspective on human-caused climate change. Global and Planetary Change, 2006, 54, 202-208.	3.5	9
93	The impact of vegetation and soil parameters in simulations of surface energy and water balance in the semi-arid sahel: A case study using SEBEX and HAPEX-Sahel data. Journal of Hydrology, 2006, 320, 238-259.	5.4	46
94	GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. Journal of Hydrometeorology, 2006, 7, 611-625.	1.9	337
95	Role of Land Surface Processes in South American Monsoon Development. Journal of Climate, 2006, 19, 741-762.	3.2	55
96	INTERACTIONS AND FEEDBACKS BETWEEN CLIMATE AND DRYLAND VEGETATIONS. , 2006, , 85-105.		5
97	Multiscale Variability of the River Runoff System in China and Its Long-Term Link to Precipitation and Sea Surface Temperature. Journal of Hydrometeorology, 2005, 6, 550-570.	1.9	22
98	Validation of SSiB model over grassland with CHeRES field experiment data in 2001. Advances in Atmospheric Sciences, 2004, 21, 547-556.	4.3	0
99	Regions of Strong Coupling Between Soil Moisture and Precipitation. Science, 2004, 305, 1138-1140.	12.6	2,337
100	Role of land surface processes in monsoon development: East Asia and West Africa. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	145
101	Direct observations of the effects of aerosol loading on net ecosystem CO2exchanges over different landscapes. Geophysical Research Letters, 2004, 31, .	4.0	179
102	The Sahelian Climate. Global Change - the IGBP Series, 2004, , 59-77.	2.1	19
103	An analytical approach for estimating CO2 and heat fluxes over the Amazonian region. Ecological Modelling, 2003, 162, 97-117.	2.5	65
104	The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Climate Policy, 2003, 3, 149-157.	5.1	36
105	The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Climate Policy, 2003, 3, 149-157.	5.1	177
106	Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites. Journal of Geophysical Research, 2003, 108, .	3.3	88
107	Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e). Global and Planetary Change, 2003, 38, 1-30.	3.5	194
108	Simulation of high latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e). Global and Planetary Change, 2003, 38, 31-53.	3.5	106

#	Article	IF	CITATIONS
109	Effects of Frozen Soil on Soil Temperature, Spring Infiltration, and Runoff: Results from the PILPS 2(d) Experiment at Valdai, Russia. Journal of Hydrometeorology, 2003, 4, 334-351.	1.9	150
110	A Numerical Study of Early Summer Regional Climate and Weather over LSA-East. Part I: Model Implementation and Verification. Monthly Weather Review, 2003, 131, 1895-1909.	1.4	22
111	Hydrological Land Surface Response in a Tropical Regime and a Midlatitudinal Regime. Journal of Hydrometeorology, 2002, 3, 39-56.	1.9	36
112	Validation of the coupled Eta/SSiB model over South America. Journal of Geophysical Research, 2002, 107, LBA 56-1.	3.3	50
113	Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements. Remote Sensing of Environment, 2002, 79, 225-242.	11.0	265
114	Modeling the Impact of Land Surface Degradation on the Climate of Tropical North Africa. Journal of Climate, 2001, 14, 1809-1822.	3.2	90
115	Multi-Scale Summer Rainfall Variability Over China and its Long-Term Link to Global Sea Surface Temperature Variability. Journal of the Meteorological Society of Japan, 1999, 77, 845-857.	1.8	138
116	Key results and implications from phase 1(c) of the Project for Intercomparison of Land-surface Parametrization Schemes. Climate Dynamics, 1999, 15, 673-684.	3.8	103
117	A simple snow-atmosphere-soil transfer model. Journal of Geophysical Research, 1999, 104, 19587-19597.	3.3	124
118	The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River basin experiment:. Global and Planetary Change, 1998, 19, 115-135.	3.5	265
119	The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) phase 2(c) Red-Arkansas River basin experiment:. Clobal and Planetary Change, 1998, 19, 137-159.	3.5	82
120	The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment:. Global and Planetary Change, 1998, 19, 161-179.	3.5	154
121	A proposal for a general interface between land surface schemes and general circulation models. Global and Planetary Change, 1998, 19, 261-276.	3.5	101
122	Comments on "Use of Midlatitude Soil Moisture and Meteorological Observations to Validate Soil Moisture Simulations with Biosphere and Bucket Models― Journal of Climate, 1997, 10, 374-376.	3.2	15
123	18-Year Land-Surface Hydrology Model Simulations for a Midlatitude Grassland Catchment in Valdai, Russia. Monthly Weather Review, 1997, 125, 3279-3296.	1.4	58
124	Biosphere feedback on regional climate in tropical North Africa. Quarterly Journal of the Royal Meteorological Society, 1997, 123, 1483-1515.	2.7	154
125	Biosphere feedback on regional climate in tropical north Africa. Quarterly Journal of the Royal Meteorological Society, 1997, 123, 1483-1515.	2.7	4
126	Modeling vadose zone liquid water fluxes: Infiltration, runoff, drainage, interflow. Global and Planetary Change, 1996, 13, 57-71.	3.5	28

#	Article	IF	CITATIONS
127	Analysis of transpiration results from the RICE and PILPS workshop. Global and Planetary Change, 1996, 13, 73-88.	3.5	71
128	SSiB and its sensitivity to soil properties—a case study using HAPEX-Mobilhy data. Global and Planetary Change, 1996, 13, 183-194.	3.5	115
129	Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research, 1996, 101, 7251-7268.	3.3	910
130	Impact of vegetation properties on U.S. summer weather prediction. Journal of Geophysical Research, 1996, 101, 7419-7430.	3.3	128
131	Sensitivity of Simulated Surface Fluxes to Changes in Land Surface Parameterizations-A Study Using ABRACOS Data. Journal of Applied Meteorology and Climatology, 1996, 35, 386-400.	1.7	42
132	The Influence of Land Surface Properties on Sahel Climate. Part II. Afforestation. Journal of Climate, 1996, 9, 3260-3275.	3.2	59
133	The Impact of Desertification in the Mongolian and the Inner Mongolian Grassland on the Regional Climate. Journal of Climate, 1996, 9, 2173-2189.	3.2	198
134	Use of Midlatitude Soil Moisture and Meteorological Observations to Validate Soil Moisture Simulations with Biosphere and Bucket Models. Journal of Climate, 1995, 8, 15-35.	3.2	177
135	The Simulated Indian Monsoon: A GCM Sensitivity Study. Journal of Climate, 1994, 7, 33-43.	3.2	114
136	The Influence of Land Surface Properties on Sahel Climate. Part 1: Desertification. Journal of Climate, 1993, 6, 2232-2245.	3.2	414
137	A Simplified Biosphere Model for Global Climate Studies. Journal of Climate, 1991, 4, 345-364.	3.2	643
138	A two-dimensional coupled biosphere-atmosphere model and its application. Advances in Atmospheric Sciences, 1991, 8, 447-458.	4.3	8
139	Investigation of Biogeophysical Feedback on the African Climate Using a Two-Dimensional Model. Journal of Climate, 1990, 3, 337-352.	3.2	46
140	Exploration of the remote sounding of infrared cooling rates due to water vapor. Meteorology and Atmospheric Physics, 1988, 38, 131-139.	2.0	6
141	Determination of atmospheric precipitable water and humidity profiles by a ground-based 1,35 cm radiometer. Advances in Atmospheric Sciences, 1984, 1, 119-127.	4.3	2
142	Memory of land surface and subsurface temperature (LST/SUBT) initial anomalies over Tibetan Plateau in different land models. Climate Dynamics, 0, , 1.	3.8	5
143	Effects of spring Tibetan Plateau land temperature anomalies on early summer floods/droughts over the monsoon regions of South East Asia. Climate Dynamics, 0, , 1.	3.8	8
144	Regional climate modeling to understand Tibetan heating remote impacts on East China precipitation. Climate Dynamics, 0, , 1.	3.8	3

#	Article	IF	CITATIONS
145	The use of the Alpert–Stein Factor Separation Methodology for climate variable interaction studies in hydrological land surface models and crop yield models. , 0, , 171-183.		0