Keiko U Torii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5347896/publications.pdf

Version: 2024-02-01

		38742	3	34986
109	10,489	50		98
papers	citations	h-index		g-index
125	125	125		7317
all docs	docs citations	times ranked		citing authors
				_

#	Article	IF	Citations
1	Cell biology of the leaf epidermis: Fate specification, morphogenesis, and coordination. Plant Cell, 2022, 34, 209-227.	6.6	23
2	Deceleration of the cell cycle underpins a switch from proliferative to terminal divisions in plant stomatal lineage. Developmental Cell, 2022, 57, 569-582.e6.	7.0	24
3	Intragenic suppressors unravel the role of the SCREAM ACT-like domain for bHLH partner selectivity in stomatal development. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
4	Plant stem cell research is uncovering the secrets of longevity and persistent growth. Plant Journal, 2021, 106, 326-335.	5.7	19
5	Stomatal development in the context of epidermal tissues. Annals of Botany, 2021, 128, 137-148.	2.9	36
6	Chemical control of stomatal function and development. Current Opinion in Plant Biology, 2021, 60, 102010.	7.1	13
7	The boundary-expressed <i>EPIDERMAL PATTERNING FACTOR-LIKE2</i> gene encoding a signaling peptide promotes cotyledon growth during <i>Arabidopsis thaliana</i> embryogenesis. Plant Biotechnology, 2021, 38, 317-322.	1.0	5
8	Shouting out loud: signaling modules in the regulation of stomatal development. Plant Physiology, 2021, 185, 765-780.	4.8	35
9	A Peptide Pair Coordinates Regular Ovule Initiation Patterns with Seed Number and Fruit Size. Current Biology, 2020, 30, 4352-4361.e4.	3.9	41
10	A super-sensitive auxin-inducible degron system with an engineered auxin-TIR1 pair. Nucleic Acids Research, 2020, 48, e108-e108.	14.5	32
11	Effective range of non-cell autonomous activator and inhibitor peptides specifying plant stomatal patterning. Development (Cambridge), 2020, 147, .	2.5	12
12	Heat Shocking the Jedi Master: HSP90's Role inÂRegulating Stomatal Cell Fate. Molecular Plant, 2020, 13, 536-538.	8.3	2
13	SCREAMing Twist on the Role of ICE1 in Freezing Tolerance. Plant Cell, 2020, 32, 816-819.	6.6	17
14	The manifold actions of signaling peptides on subcellular dynamics of a receptor specify stomatal cell fate. ELife, 2020, 9, .	6.0	17
15	Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP kinases to SPEECHLESS. Nature Plants, 2019, 5, 742-754.	9.3	55
16	Linking cell cycle to stomatal differentiation. Current Opinion in Plant Biology, 2019, 51, 66-73.	7.1	23
17	Stomatal Development and Perspectives toward Agricultural Improvement. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034660.	5. 5	37
18	Stem cells within the shoot apical meristem: identity, arrangement and communication. Cellular and Molecular Life Sciences, 2019, 76, 1067-1080.	5.4	20

#	Article	IF	CITATIONS
19	Dissecting plant hormone signaling with synthetic molecules: perspective from the chemists. Current Opinion in Plant Biology, 2019, 47, 32-37.	7.1	9
20	<i>ERECTA</i> -family genes coordinate stem cell functions between the epidermal and internal layers of the shoot apical meristem. Development (Cambridge), 2018, 145, .	2.5	26
21	Chemical hijacking of auxin signaling with an engineered auxin–TIR1 pair. Nature Chemical Biology, 2018, 14, 299-305.	8.0	107
22	Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling. Nature, 2018, 561, 248-252.	27.8	126
23	Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nature Plants, 2018, 4, 453-459.	9.3	198
24	Plant Chemical Biology. Plant and Cell Physiology, 2018, 59, 1483-1486.	3.1	11
25	A Super Strong Engineered Auxin–TIR1 Pair. Plant and Cell Physiology, 2018, 59, 1538-1544.	3.1	25
26	MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata. Developmental Cell, 2018, 45, 303-315.e5.	7.0	97
27	Hormonal and environmental signals guiding stomatal development. BMC Biology, 2018, 16, 21.	3 . 8	124
28	Harnessing synthetic chemistry to probe and hijack auxin signaling. New Phytologist, 2018, 220, 417-424.	7.3	12
29	Stomatal development in time: the past and the future. Current Opinion in Genetics and Development, 2017, 45, 1-9.	3.3	38
30	Cryptic bioactivity capacitated by synthetic hybrid plant peptides. Nature Communications, 2017, 8, 14318.	12.8	22
31	Mechanisms and Strategies Shaping Plant Peptide Hormones. Plant and Cell Physiology, 2017, 58, 1313-1318.	3.1	25
32	ERECTA â€family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. New Phytologist, 2017, 213, 1697-1709.	7.3	60
33	Stem development through vascular tissues: EPFL–ERECTA family signaling that bounces in and out of phloem. Journal of Experimental Botany, 2017, 68, 45-53.	4.8	36
34	Discovery of synthetic small molecules that enhance the number of stomata: C–H functionalization chemistry for plant biology. Chemical Communications, 2017, 53, 9632-9635.	4.1	28
35	The Next Generation of Training for Arabidopsis Researchers: Bioinformatics and Quantitative Biology. Plant Physiology, 2017, 175, 1499-1509.	4.8	11
36	Small Pores with a Big Impact. Plant Physiology, 2017, 174, 467-469.	4.8	40

#	Article	IF	CITATIONS
37	Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling. ELife, 2017, 6, .	6.0	86
38	ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis. Frontiers in Plant Science, 2016, 7, 897.	3.6	99
39	50Âyears of Arabidopsis research: highlights and future directions. New Phytologist, 2016, 209, 921-944.	7.3	186
40	Lineage-specific stem cells, signals and asymmetries during stomatal development. Development (Cambridge), 2016, 143, 1259-1270.	2.5	84
41	Stomagenesis versus myogenesis: Parallels in intrinsic and extrinsic regulation of transcription factor mediated specialized cellâ€type differentiation in plants and animals. Development Growth and Differentiation, 2016, 58, 341-354.	1.5	7
42	A Secreted Peptide and Its Receptors Shape the Auxin Response Pattern and Leaf Margin Morphogenesis. Current Biology, 2016, 26, 2478-2485.	3.9	61
43	Impact of erecta mutation on leaf serration differs between Arabidopsis accessions. Plant Signaling and Behavior, 2016, 11, e1261231.	2.4	0
44	Plant synthetic biology for molecular engineering of signalling and development. Nature Plants, 2016, 2, 16010.	9.3	51
45	Imaging Ventral Cell Plate Formation in Guard Cells. Microscopy and Microanalysis, 2015, 21, 713-714.	0.4	0
46	Cell walls as a stage for intercellular communication regulating shoot meristem development. Frontiers in Plant Science, 2015, 6, 324.	3.6	14
47	Co-Immunoprecipitation of Membrane-Bound Receptors. The Arabidopsis Book, 2015, 13, e0180.	0.5	46
48	Competitive binding of antagonistic peptides fine-tunes stomatal patterning. Nature, 2015, 522, 439-443.	27.8	237
49	Differential Function of Arabidopsis SERK Family Receptor-like Kinases in Stomatal Patterning. Current Biology, 2015, 25, 2361-2372.	3.9	242
50	Stomatal differentiation: the beginning and the end. Current Opinion in Plant Biology, 2015, 28, 16-22.	7.1	57
51	Molecular Framework of a Regulatory Circuit Initiating Two-Dimensional Spatial Patterning of Stomatal Lineage. PLoS Genetics, 2015, 11, e1005374.	3 . 5	74
52	SPINDLY, ERECTA, and Its Ligand STOMAGEN Have a Role in Redox-Mediated Cortex Proliferation in the Arabidopsis Root. Molecular Plant, 2014, 7, 1727-1739.	8.3	49
53	Keiko U. Torii. Current Biology, 2013, 23, R943-R944.	3.9	0
54	Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes. Journal of Experimental Botany, 2013, 64, 5323-5333.	4.8	64

#	Article	IF	CITATIONS
55	<i>Arabidopsis</i> homeodomain-leucine zipper IV proteins promote stomatal development and ectopically induce stomata beyond the epidermis. Development (Cambridge), 2013, 140, 1924-1935.	2.5	76
56	Take a deep breath: peptide signalling in stomatal patterning and differentiation. Journal of Experimental Botany, 2013, 64, 5243-5251.	4.8	37
57	A MAPK Cascade Downstream of ERECTA Receptor-Like Protein Kinase Regulates <i>Arabidopsis</i> Inflorescence Architecture by Promoting Localized Cell Proliferation Â. Plant Cell, 2013, 24, 4948-4960.	6.6	191
58	Regulation of inflorescence architecture by intertissue layer ligand–receptor communication between endodermis and phloem. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6337-6342.	7.1	160
59	Long-term, High-resolution Confocal Time Lapse Imaging of Arabidopsis Cotyledon Epidermis during Germination. Journal of Visualized Experiments, 2012, , .	0.3	20
60	Mix-and-match: ligand–receptor pairs in stomatal development and beyond. Trends in Plant Science, 2012, 17, 711-719.	8.8	95
61	A Tale of Two Systems: Peptide Ligand-Receptor Pairs in Plant Development. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 83-89.	1.1	14
62	Direct interaction of ligand–receptor pairs specifying stomatal patterning. Genes and Development, 2012, 26, 126-136.	5.9	310
63	Two-dimensional spatial patterning in developmental systems. Trends in Cell Biology, 2012, 22, 438-446.	7.9	57
64	Cell Biology â€" Building blocks for dynamic development and behaviors. Current Opinion in Plant Biology, 2012, 15, 575-577.	7.1	0
65	Mechanisms of Stomatal Development. Annual Review of Plant Biology, 2012, 63, 591-614.	18.7	346
66	Molecular Profiling of Stomatal Meristemoids Reveals New Component of Asymmetric Cell Division and Commonalities among Stem Cell Populations in <i>Arabidopsis</i> Plant Cell, 2011, 23, 3260-3275.	6.6	169
67	Arabidopsis ERECTA-Family Receptor Kinases Mediate Morphological Alterations Stimulated by Activation of NB-LRR-Type UNI Proteins. Plant and Cell Physiology, 2011, 52, 804-814.	3.1	42
68	The presence of multiple introns is essential for ERECTA expression in Arabidopsis. Rna, 2011, 17, 1907-1921.	3. 5	56
69	Plant twitter: ligands under 140 amino acids enforcing stomatal patterning. Journal of Plant Research, 2010, 123, 275-280.	2.4	63
70	Ethylene-induced hyponastic growth in <i>Arabidopsis thaliana</i> is controlled by ERECTA. Plant Journal, 2010, 61, 83-95.	5 . 7	39
71	Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in <i>Arabidopsis CHORUS</i> (<i>GLUCAN SYNTHASE-LIKE 8</i>). Development (Cambridge), 2010, 137, 1731-1741.	2.5	186
72	FERONIA as an upstream receptor kinase for polar cell growth in plants. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17461-17462.	7.1	31

#	Article	IF	CITATIONS
73	ERECTA controls low light intensity-induced differential petiole growth independent of Phytochrome B and Cryptochrome 2 action in Arabidopsis thaliana. Plant Signaling and Behavior, 2010, 5, 284-286.	2.4	14
74	Out of the Mouths of Plants: The Molecular Basis of the Evolution and Diversity of Stomatal Development. Plant Cell, 2010, 22, 296-306.	6.6	160
75	Epidermal Cell Density is Autoregulated via a Secretory Peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis Leaves. Plant and Cell Physiology, 2009, 50, 1019-1031.	3.1	321
76	Regulation of Arabidopsis Early Anther Development by the Mitogen-Activated Protein Kinases, MPK3 and MPK6, and the ERECTA and Related Receptor-Like Kinases. Molecular Plant, 2008, 1, 645-658.	8.3	134
77	<i>SCREAM/ICE1</i> and <i>SCREAM2</i> Specify Three Cell-State Transitional Steps Leading to <i>Arabidopsis</i> Stomatal Differentiation Â. Plant Cell, 2008, 20, 1775-1785.	6.6	461
78	The bHLH Protein, MUTE, Controls Differentiation of Stomata and the Hydathode Pore in Arabidopsis. Plant and Cell Physiology, 2008, 49, 934-943.	3.1	115
79	Stomatal Development. Plant Signaling and Behavior, 2007, 2, 311-313.	2.4	6
80	Stomatal Patterning and Guard Cell Differentiation. Plant Cell Monographs, 2007, , 343-359.	0.4	4
81	Haploinsufficiency after successive loss of signaling reveals a role for <i>ERECTA</i> -family genes in <i>Arabidopsis</i> ovule development. Development (Cambridge), 2007, 134, 3099-3109.	2.5	97
82	Autonomy of cell proliferation and developmental programs during Arabidopsis aboveground organ morphogenesis. Developmental Biology, 2007, 304, 367-381.	2.0	80
83	The secretory peptide gene <i>EPF1</i> enforces the stomatal one-cell-spacing rule. Genes and Development, 2007, 21, 1720-1725.	5.9	438
84	Breaking the silence: three bHLH proteins direct cellâ€fate decisions during stomatal development. BioEssays, 2007, 29, 861-870.	2.5	84
85	Termination of asymmetric cell division and differentiation of stomata. Nature, 2007, 445, 501-505.	27.8	490
86	Communication, Fate, and Decision Making during Stomatal Development. Journal of the Society of Japanese Women Scientists, 2006, 7, 12-17.	0.0	0
87	Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility. Plant Molecular Biology, 2005, 58, 333-349.	3.9	172
88	Interaction of Auxin and ERECTA in Elaborating Arabidopsis Inflorescence Architecture Revealed by the Activation Tagging of a New Member of the YUCCA Family Putative Flavin Monooxygenases. Plant Physiology, 2005, 139, 192-203.	4.8	112
89	Stomatal Patterning and Differentiation by Synergistic Interactions of Receptor Kinases. Science, 2005, 309, 290-293.	12.6	554
90	Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development (Cambridge), 2004, 131, 1491-1501.	2.5	386

#	Article	IF	CITATIONS
91	Leucine-Rich Repeat Receptor Kinases in Plants: Structure, Function, and Signal Transduction Pathways. International Review of Cytology, 2004, 234, 1-46.	6.2	309
92	ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant Journal, 2003, 36, 353-365.	5.7	239
93	Dominant-Negative Receptor Uncovers Redundancy in the Arabidopsis ERECTA Leucine-Rich Repeat Receptor–Like Kinase Signaling Pathway That Regulates Organ Shape. Plant Cell, 2003, 15, 1095-1110.	6.6	224
94	Regulation of Inflorescence Architecture and Organ Shape by the ERECTA Gene in Arabidopsis. , 2003, , 153-164.		9
95	Receptor serine/threonine protein kinases in signalling: analysis of the erecta receptorâ€ike kinase ofArabidopsis thaliana. New Phytologist, 2001, 151, 133-143.	7.3	77
96	Receptor kinase activation and signal transduction in plants: an emerging picture. Current Opinion in Plant Biology, 2000, 3, 361-367.	7.1	129
97	Receptor-like kinases in plant development. Advances in Botanical Research, 2000, , 225-267.	1.1	18
98	The RING Finger Motif of Photomorphogenic Repressor COP1 Specifically Interacts with the RING-H2 Motif of a NovelArabidopsis Protein. Journal of Biological Chemistry, 1999, 274, 27674-27681.	3.4	62
99	The N-terminal fragment of Arabidopsis photomorphogenic repressor COP1 maintains partial function and acts in a concentration-dependent manner. Plant Journal, 1999, 20, 713-717.	5.7	15
100	From surface to air: shoot meristem growth. Trends in Cell Biology, 1999, 9, 331-332.	7.9	0
101	Functional dissection of Arabidopsis COP1 reveals specific roles of its three structural modules in light control of seedling development. EMBO Journal, 1998, 17, 5577-5587.	7.8	119
102	The ArabidopsisERECTAgene is expressed in the shoot apical meristem and organ primordia. Plant Journal, 1998, 15, 301-310.	5.7	113
103	The role of COP1 in light control of Arabidopsis seedling development. Plant, Cell and Environment, 1997, 20, 728-733.	5.7	13
104	The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats Plant Cell, 1996, 8, 735-746.	6.6	733
105	Expression of an N-Terminal Fragment of COP1 Confers a Dominant-Negative Effect on Light-Regulated Seedling Development in Arabidopsis. Plant Cell, 1996, 8, 1491.	6.6	13
106	Regulation of plant form: Identification of a molecule controlling cell expansion. BioEssays, 1995, 17, 383-386.	2.5	3
107	Immunohistochemical localization of a glycoprotein, GP80, in the outermost layer of the developing endosperm of immature seeds of carrot. Planta, 1991, 185, 201-8.	3.2	3
108	Transmembrane Receptors in Plants: Receptor Kinases and their Ligands. , 0, , 1-29.		1

#	Article	IF	CITATIONS
109	Plant structure and function: Evolutionary origins and underlying mechanisms. Plant Physiology, 0, , .	4.8	O