Marek J SzczepaÅ,,czyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5347493/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
2	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
3	Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Physical Review Letters, 2019, 123, 231107.	7.8	359
4	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
5	Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Physical Review D, 2020, 102, .	4.7	196
6	LIGO detector characterization in the second and third observing runs. Classical and Quantum Gravity, 2021, 38, 135014.	4.0	128
7	Eccentricity estimate for black hole mergers with numerical relativity simulations. Nature Astronomy, 2022, 6, 344-349.	10.1	89
8	Machine-learning nonstationary noise out of gravitational-wave detectors. Physical Review D, 2020, 101, .	4.7	70
9	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
10	Approaching the motional ground state of a 10-kg object. Science, 2021, 372, 1333-1336.	12.6	59
11	coherent WaveBurst, a pipeline for unmodeled gravitational-wave data analysis. SoftwareX, 2021, 14, 100678.	2.6	37
12	Detecting and reconstructing gravitational waves from the next galactic core-collapse supernova in the advanced detector era. Physical Review D, 2021, 104, .	4.7	35
13	Inferring the core-collapse supernova explosion mechanism with three-dimensional gravitational-wave simulations. Physical Review D, 2017, 96, .	4.7	25
14	Improving the background of gravitational-wave searches for core collapse supernovae: a machine learning approach. Machine Learning: Science and Technology, 2020, 1, 015005.	5.0	24
15	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
16	Observing an intermediate-mass black hole GW190521 with minimal assumptions. Physical Review D, 2021, 103, .	4.7	19
17	Optimization of model independent gravitational wave search for binary black hole mergers using machine learning. Physical Review D, 2021, 104, .	4.7	13
18	Search for binary black hole mergers in the third observing run of Advanced LIGO-Virgo using coherent WaveBurst enhanced with machine learning. Physical Review D, 2022, 105, .	4.7	9

#	Article	IF	CITATIONS
19	Modeling core-collapse supernovae gravitational-wave memory in laser interferometric data. Physical Review D, 2022, 105, .	4.7	9
20	Detection of LIGO-Virgo binary black holes in the pair-instability mass gap. Physical Review D, 2021, 104, .	4.7	7
21	Using supervised learning algorithms as a follow-up method in the search of gravitational waves from core-collapse supernovae. Physical Review D, 2022, 105, .	4.7	4
22	Gravitational Waves from a Core-Collapse Supernova: Perspectives with Detectors in the Late 2020s and Early 2030s. Galaxies, 2022, 10, 70.	3.0	4
23	Constraining the Time of Gravitational-wave Emission from Core-collapse Supernovae. Astrophysical Journal, 2022, 931, 159.	4.5	4
24	Interpreting gravitational-wave burst detections: constraining source properties without astrophysical models. Classical and Quantum Gravity, 2020, 37, 105011.	4.0	1