Robert P Carlyon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5346991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predictive Top-Down Integration of Prior Knowledge during Speech Perception. Journal of Neuroscience, 2012, 32, 8443-8453.	3.6	314
2	How the brain separates sounds. Trends in Cognitive Sciences, 2004, 8, 465-471.	7.8	278
3	Effects of attention and unilateral neglect on auditory stream segregation Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 115-127.	0.9	272
4	The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination. Journal of the Acoustical Society of America, 1994, 95, 3529-3540.	1.1	271
5	Perceptual Organization of Tone Sequences in the Auditory Cortex of Awake Macaques. Neuron, 2005, 48, 139-148.	8.1	266
6	Effects of Location, Frequency Region, and Time Course of Selective Attention on Auditory Scene Analysis Journal of Experimental Psychology: Human Perception and Performance, 2004, 30, 643-656.	0.9	236
7	The role of auditory cortex in the formation of auditory streams. Hearing Research, 2007, 229, 116-131.	2.0	165
8	Intensity discrimination: A severe departure from Weber's law. Journal of the Acoustical Society of America, 1984, 76, 1369-1376.	1.1	158
9	Comparing the fundamental frequencies of resolved and unresolved harmonics: Evidence for two pitch mechanisms?. Journal of the Acoustical Society of America, 1994, 95, 3541-3554.	1.1	152
10	Swinging at a Cocktail Party. Psychological Science, 2013, 24, 1995-2004.	3.3	143
11	Syntax as a reflex: Neurophysiological evidence for early automaticity of grammatical processing. Brain and Language, 2008, 104, 244-253.	1.6	131
12	Effects of attention and unilateral neglect on auditory stream segregation Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 115-127.	0.9	129
13	Perceptual learning of noise vocoded words: Effects of feedback and lexicality Journal of Experimental Psychology: Human Perception and Performance, 2008, 34, 460-474.	0.9	128
14	Brain regions recruited for the effortful comprehension of noise-vocoded words. Language and Cognitive Processes, 2012, 27, 1145-1166.	2.2	105
15	Asymmetric Pulses in Cochlear Implants: Effects of Pulse Shape, Polarity, and Rate. JARO - Journal of the Association for Research in Otolaryngology, 2006, 7, 253-266.	1.8	104
16	Improved speech recognition in noise in simulated binaurally combined acoustic and electric stimulation. Journal of the Acoustical Society of America, 2007, 121, 3717.	1.1	103
17	Higher Sensitivity of Human Auditory Nerve Fibers to Positive Electrical Currents. JARO - Journal of the Association for Research in Otolaryngology, 2008, 9, 241-251.	1.8	103
18	Pitch Comparisons between Electrical Stimulation of a Cochlear Implant and Acoustic Stimuli Presented to a Normal-hearing Contralateral Ear. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 625-640.	1.8	97

#	Article	IF	CITATIONS
19	Continuous versus gated pedestals and the â€~â€~severe departure'' from Weber's law. Journal of the Acoustical Society of America, 1986, 79, 453-460.	1.1	94
20	Temporal pitch mechanisms in acoustic and electric hearing. Journal of the Acoustical Society of America, 2002, 112, 621-633.	1.1	85
21	Perception of Pitch by People with Cochlear Hearing Loss and by Cochlear Implant Users. , 2005, , 234-277.		83
22	Place and temporal cues in pitch perception: are they truly independent?. Acoustics Research Letters Online: ARLO, 2000, 1, 25-30.	0.7	77
23	Limits of temporal pitch in cochlear implants. Journal of the Acoustical Society of America, 2009, 125, 1649-1657.	1.1	76
24	Extending the Limits of Place and Temporal Pitch Perception in Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 233-251.	1.8	73
25	Excitation produced by Schroeder-phase complexes: Evidence for fast-acting compression in the auditory system. Journal of the Acoustical Society of America, 1997, 101, 3636-3647.	1.1	72
26	Changes in the masked thresholds of brief tones produced by prior bursts of noise. Hearing Research, 1989, 41, 223-235.	2.0	71
27	Polarity effects on neural responses of the electrically stimulated auditory nerve at different cochlear sites. Hearing Research, 2010, 269, 146-161.	2.0	69
28	Comodulation masking release for three types of modulator as a function of modulation rate. Hearing Research, 1989, 42, 37-45.	2.0	67
29	Discriminating between coherent and incoherent frequency modulation of complex tones. Journal of the Acoustical Society of America, 1991, 89, 329-340.	1.1	67
30	An Information Theoretic Characterisation of Auditory Encoding. PLoS Biology, 2007, 5, e288.	5.6	67
31	Subcortical Neural Synchrony and Absolute Thresholds Predict Frequency Discrimination Independently. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 757-766.	1.8	67
32	Cochlear implants. Current Biology, 2014, 24, R878-R884.	3.9	67
33	Encoding the fundamental frequency of a complex tone in the presence of a spectrally overlapping masker. Journal of the Acoustical Society of America, 1996, 99, 517-524.	1.1	65
34	The Neurophysiological Basis of the Auditory Continuity Illusion: A Mismatch Negativity Study. Journal of Cognitive Neuroscience, 2003, 15, 747-758.	2.3	65
35	The Frequency Following Response (FFR) May Reflect Pitch-Bearing Information But is Not a Direct Representation of Pitch. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 767-782.	1.8	65
36	Cross-Modal and Non-Sensory Influences on Auditory Streaming. Perception, 2003, 32, 1393-1402.	1.2	63

#	Article	IF	CITATIONS
37	An objective measurement of the build-up of auditory streaming and of its modulation by attention Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 1253-1262.	0.9	63
38	Top-down influences of written text on perceived clarity of degraded speech Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 186-199.	0.9	63
39	Effect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulation. Hearing Research, 2005, 205, 210-224.	2.0	62
40	Binaural Unmasking with Bilateral Cochlear Implants. JARO - Journal of the Association for Research in Otolaryngology, 2006, 7, 352-360.	1.8	62
41	Temporal pitch perception at high rates in cochlear implants. Journal of the Acoustical Society of America, 2010, 127, 3114-3123.	1.1	61
42	Generalization of perceptual learning of vocoded speech Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 283-295.	0.9	61
43	Temporal integration of trains of tone pulses by normal and by cochlearly impaired listeners. Journal of the Acoustical Society of America, 1990, 87, 260-268.	1.1	60
44	Perceptual asymetries in audition Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 713-725.	0.9	60
45	Differences in frequency modulation detection and fundamental frequency discrimination between complex tones consisting of resolved and unresolved harmonics. Journal of the Acoustical Society of America, 1995, 98, 1355-1364.	1.1	58
46	Neglect Between but Not Within Auditory Objects. Journal of Cognitive Neuroscience, 2000, 12, 1056-1065.	2.3	58
47	Limitations on rate discrimination. Journal of the Acoustical Society of America, 2002, 112, 1009-1025.	1.1	58
48	Using recurrent neural networks to improve the perception of speech in non-stationary noise by people with cochlear implants. Journal of the Acoustical Society of America, 2019, 146, 705-718.	1.1	58
49	Dual temporal pitch percepts from acoustic and electric amplitude-modulated pulse trains. Journal of the Acoustical Society of America, 1999, 105, 347-357.	1.1	57
50	Influence of peripheral resolvability on the perceptual segregation of harmonic complex tones differing in fundamental frequency. Journal of the Acoustical Society of America, 2000, 108, 263-271.	1.1	55
51	The upper limit of temporal pitch for cochlear-implant listeners: Stimulus duration, conditioner pulses, and the number of electrodes stimulated. Journal of the Acoustical Society of America, 2010, 127, 1469-1478.	1.1	54
52	The Polarity Sensitivity of the Electrically Stimulated Human Auditory Nerve Measured at the Level of the Brainstem. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 359-377.	1.8	52
53	Attentional Modulation of Envelope-Following Responses at Lower (93–109ÂHz) but Not Higher (217–233ÂHz) Modulation Rates. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 83-97.	1.8	51
54	Illusory Vowels Resulting from Perceptual Continuity: A Functional Magnetic Resonance Imaging Study. Journal of Cognitive Neuroscience, 2008, 20, 1737-1752.	2.3	50

#	Article	IF	CITATIONS
55	Alternative pulse shapes in electrical hearing. Hearing Research, 2008, 242, 154-163.	2.0	50
56	Detection of tones in noise and the â€~ã€~severe departure'' from Weber's law. Journal of the Acoustic Society of America, 1986, 79, 461-464.	cal 1.1	49
57	Evidence for two pitch encoding mechanisms using a selective auditory training paradigm. Perception & Psychophysics, 2002, 64, 189-197.	2.3	44
58	Across-frequency interference effects in fundamental frequency discrimination: Questioning evidence for two pitch mechanisms. Journal of the Acoustical Society of America, 2004, 116, 1092-1104.	1.1	44
59	Lexical Influences on Auditory Streaming. Current Biology, 2013, 23, 1585-1589.	3.9	43
60	Further evidence against an acrossâ€frequency mechanism specific to the detection of frequency modulation (FM) incoherence between resolved frequency components. Journal of the Acoustical Society of America, 1994, 95, 949-961.	1.1	41
61	Simulations of cochlear implant hearing using filtered harmonic complexes: Implications for concurrent sound segregation. Journal of the Acoustical Society of America, 2004, 115, 1736-1746.	1.1	41
62	Effects of waveform shape on human sensitivity to electrical stimulation of the inner ear. Hearing Research, 2005, 200, 73-86.	2.0	41
63	Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 481-508.	1.8	41
64	Masking period patterns of Schroeder-phase complexes: Effects of level, number of components, and phase of flanking components. Journal of the Acoustical Society of America, 1997, 101, 3648-3657.	1.1	40
65	Comments on "A unitary model of pitch perception―[J. Acoust. Soc. Am. 102, 1811–1820 (1997)]. Journal of the Acoustical Society of America, 1998, 104, 1118-1121.	1.1	37
66	Polarity effects on place pitch and loudness for three cochlear-implant designs and at different cochlear sites. Journal of the Acoustical Society of America, 2013, 134, 503-509.	1.1	37
67	Effects of temporal fringes on fundamental-frequency discrimination. Journal of the Acoustical Society of America, 1998, 104, 3006-3018.	1.1	36
68	Context dependence of fundamental-frequency discrimination: Lateralized temporal fringes. Journal of the Acoustical Society of America, 1999, 106, 3553-3563.	1.1	36
69	An account of monaural phase sensitivity. Journal of the Acoustical Society of America, 2003, 114, 333-348.	1.1	36
70	Limitations on Monaural and Binaural Temporal Processing in Bilateral Cochlear Implant Listeners. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 641-652.	1.8	36
71	A release from masking by continuous, random, notched noise. Journal of the Acoustical Society of America, 1987, 81, 418-426.	1.1	35
72	The development and decline of forward masking. Hearing Research, 1988, 32, 65-79.	2.0	35

#	Article	IF	CITATIONS
73	Optimizing the Clinical Fit of Auditory Brain Stem Implants. Ear and Hearing, 2005, 26, 251-262.	2.1	35
74	Spread of excitation varies for different electrical pulse shapes and stimulation modes in cochlear implants. Hearing Research, 2012, 290, 21-36.	2.0	35
75	Concurrent Sound Segregation in Electric and Acoustic Hearing. JARO - Journal of the Association for Research in Otolaryngology, 2007, 8, 119-133.	1.8	34
76	The Neurophysiological Basis of the Auditory Continuity Illusion: A Mismatch Negativity Study. Journal of Cognitive Neuroscience, 2003, 15, 747-758.	2.3	33
77	Effect of signal frequency and masker level on the frequency regions responsible for the overshoot effect. Journal of the Acoustical Society of America, 1992, 91, 1034-1041.	1.1	32
78	Acoustic distortion as a measure of frequency selectivity: Relation to psychophysical equivalent rectangular bandwidth. Journal of the Acoustical Society of America, 1993, 93, 3291-3297.	1.1	32
79	Effect of duration on the frequency discrimination of individual partials in a complex tone and on the discrimination of fundamental frequency. Journal of the Acoustical Society of America, 2007, 121, 373-382.	1.1	32
80	Intensity discrimination under forward and backward masking: Role of referential coding. Journal of the Acoustical Society of America, 1995, 97, 1141-1149.	1.1	31
81	Learning in discrimination of frequency or modulation rate: generalization to fundamental frequency discrimination. Hearing Research, 2003, 184, 41-50.	2.0	31
82	Auditory processing of real and illusory changes in frequency modulation (FM) phase. Journal of the Acoustical Society of America, 2004, 116, 3629-3639.	1.1	31
83	Influence of rate of change of frequency on the overall pitch of frequency-modulated tones. Journal of the Acoustical Society of America, 2001, 109, 701-712.	1.1	30
84	Pitch Discrimination. Otology and Neurotology, 2015, 36, 1472-1479.	1.3	30
85	Effect of Pulse Polarity on Thresholds and on Non-monotonic Loudness Growth in Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 513-527.	1.8	30
86	Detection of Extracochlear Electrodes in Cochlear Implants with Electric Field Imaging/Transimpedance Measurements:. Ear and Hearing, 2020, 41, 1196-1207.	2.1	30
87	Effects of forward masking on intensity discrimination, frequency discrimination, and the detection of tones in noise. Journal of the Acoustical Society of America, 1993, 93, 2886-2895.	1.1	29
88	Loudness Perception and Intensity Coding. , 1995, , 123-160.		29
89	The â€~â€~overshoot'' effect and sensory hearing impairment. Journal of the Acoustical Society of America 1987, 82, 1078-1081	^{3,} 1.1	28
90	The effects of two temporal cues on pitch judgments. Journal of the Acoustical Society of America, 1997, 102, 1097-1105.	1.1	28

#	Article	IF	CITATIONS
91	Forward-masking patterns produced by symmetric and asymmetric pulse shapes in electric hearing. Journal of the Acoustical Society of America, 2010, 127, 326-338.	1.1	28
92	Comparison of Signal and Gap-Detection Thresholds for Focused and Broad Cochlear Implant Electrode Configurations. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 273-284.	1.8	28
93	Effect of Stimulus Polarity on Detection Thresholds in Cochlear Implant Users: Relationships with Average Threshold, Gap Detection, and Rate Discrimination. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 559-567.	1.8	28
94	A Site-Selection Strategy Based on Polarity Sensitivity for Cochlear Implants: Effects on Spectro-Temporal Resolution and Speech Perception. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 431-448.	1.8	28
95	Masker asynchrony impairs the fundamentalâ€frequency discrimination of unresolved harmonics. Journal of the Acoustical Society of America, 1996, 99, 525-533.	1.1	27
96	The role of excitation-pattern cues and temporal cues in the frequency and modulation-rate discrimination of amplitude-modulated tones. Journal of the Acoustical Society of America, 1998, 104, 1039-1050.	1.1	27
97	Neural Decoding of Bistable Sounds Reveals an Effect of Intention on Perceptual Organization. Journal of Neuroscience, 2018, 38, 2844-2853.	3.6	27
98	Pulse-rate discrimination by cochlear-implant and normal-hearing listeners with and without binaural cues. Journal of the Acoustical Society of America, 2008, 123, 2276-2286.	1.1	26
99	Frequency discrimination duration effects for Huggins pitch and narrowband noise (L). Journal of the Acoustical Society of America, 2011, 129, 1-4.	1.1	26
100	Rate discrimination, gap detection and ranking of temporal pitch in cochlear implant users. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 371-382.	1.8	26
101	A Dual-Process Integrator–Resonator Model of the Electrically Stimulated Human Auditory Nerve. JARO - Journal of the Association for Research in Otolaryngology, 2007, 8, 84-104.	1.8	25
102	The Continuity Illusion Does Not Depend on Attentional State: fMRI Evidence from Illusory Vowels. Journal of Cognitive Neuroscience, 2011, 23, 2675-2689.	2.3	25
103	Re-examining the upper limit of temporal pitch. Journal of the Acoustical Society of America, 2014, 136, 3186-3199.	1.1	25
104	Development and validation of a spectro-temporal processing test for cochlear-implant listeners. Journal of the Acoustical Society of America, 2018, 144, 2983-2997.	1.1	25
105	Effects of pulse rate on thresholds and loudness of biphasic and alternating monophasic pulse trains in electrical hearing. Hearing Research, 2006, 220, 49-60.	2.0	24
106	Simulations of the effect of unlinked cochlear-implant automatic gain control and head movement on interaural level differences. Journal of the Acoustical Society of America, 2019, 145, 1389-1400.	1.1	24
107	On the perceptual limits of octave harmony and their origin. Journal of the Acoustical Society of America, 1991, 90, 3019-3027.	1.1	23
108	Place-pitch manipulations with cochlear implants. Journal of the Acoustical Society of America, 2012, 131, 2225-2236.	1.1	23

#	Article	IF	CITATIONS
109	Detecting singleâ€cycle frequency modulation imposed on sinusoidal, harmonic, and inharmonic carriers. Journal of the Acoustical Society of America, 1989, 85, 2563-2574.	1.1	22
110	Effects of aspirin on human psychophysical tuning curves in forward and simultaneous masking. Hearing Research, 1996, 99, 110-118.	2.0	22
111	Temporal pitch percepts elicited by dual-channel stimulation of a cochlear implant. Journal of the Acoustical Society of America, 2010, 127, 339-349.	1.1	22
112	Detecting mistuning in the presence of synchronous and asynchronous interfering sounds. Journal of the Acoustical Society of America, 1994, 95, 2622-2630.	1.1	21
113	Pitch of amplitude-modulated irregular-rate stimuli in acoustic and electric hearing. Journal of the Acoustical Society of America, 2003, 114, 1516-1528.	1.1	21
114	Detection of acrossâ€frequency differences in fundamental frequency. Journal of the Acoustical Society of America, 1992, 91, 279-292.	1.1	20
115	Detecting pitchâ€pulse asynchronies and differences in fundamental frequency. Journal of the Acoustical Society of America, 1994, 95, 968-979.	1.1	20
116	Behavioral and physiological correlates of temporal pitch perception in electric and acoustic hearing. Journal of the Acoustical Society of America, 2008, 123, 973-985.	1.1	20
117	Effect of stimulus level and place of stimulation on temporal pitch perception by cochlear implant users. Journal of the Acoustical Society of America, 2010, 127, 2997-3008.	1.1	20
118	Dominance region for pitch: Effects of duration and dichotic presentation. Journal of the Acoustical Society of America, 2005, 117, 1326-1336.	1.1	19
119	Can dichotic pitches form two streams?. Journal of the Acoustical Society of America, 2005, 118, 977-981.	1.1	19
120	Across-Channel Timing Differences as a Potential Code for the Frequency of Pure Tones. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 159-171.	1.8	19
121	Electrophysiological assessment of temporal envelope processing in cochlear implant users. Scientific Reports, 2020, 10, 15406.	3.3	19
122	Effects of aspirin on human auditory filters. Hearing Research, 1993, 66, 233-244.	2.0	18
123	Auditory Midline and Spatial Discrimination in Patients with Unilateral Neglect. Cortex, 2001, 37, 706-709.	2.4	17
124	The binaural masking level difference: cortical correlates persist despite severe brain stem atrophy in progressive supranuclear palsy. Journal of Neurophysiology, 2014, 112, 3086-3094.	1.8	17
125	Multistage nonlinear optimization to recover neural activation patterns from evoked compound action potentials of cochlear implant users. IEEE Transactions on Biomedical Engineering, 2015, 63, 1-1.	4.2	17
126	Evaluating and Comparing Behavioural and Electrophysiological Estimates of Neural Health in Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 67-80.	1.8	17

#	Article	IF	CITATIONS
127	Comodulation masking release in speech identification with real and simulated cochlear-implant hearing. Journal of the Acoustical Society of America, 2012, 131, 1315-1324.	1.1	16
128	Combined neural and behavioural measures of temporal pitch perception in cochlear implant users. Journal of the Acoustical Society of America, 2015, 138, 2885-2905.	1.1	16
129	Specificity of the Human Frequency Following Response for Carrier and Modulation Frequency Assessed Using Adaptation. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 747-762.	1.8	16
130	Auditory Perceptual Organization Inside and Outside the Laboratory. , 2004, , 15-48.		16
131	Detecting coherent and incoherent frequency modulation. Hearing Research, 2000, 140, 173-188.	2.0	15
132	Pitch discrimination interference: The role of pitch pulse asynchrony. Journal of the Acoustical Society of America, 2005, 117, 3860-3866.	1.1	15
133	Polarity Sensitivity as a Potential Correlate of Neural Degeneration in Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2020, 21, 89-104.	1.8	15
134	The Panoramic ECAP Method: Estimating Patient-Specific Patterns of Current Spread and Neural Health in Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 567-589.	1.8	15
135	The detection of differences in the depth of frequency modulation. Journal of the Acoustical Society of America, 1994, 96, 115-125.	1.1	14
136	Effects of ear of entry and perceived location of synchronous and asynchronous components on mistuning detection. Journal of the Acoustical Society of America, 1998, 104, 3534-3545.	1.1	14
137	The effect of modulation rate on the detection of frequency modulation and mistuning of complex tones. Journal of the Acoustical Society of America, 2000, 108, 304-315.	1.1	14
138	Differences between psychoacoustic and frequency following response measures of distortion tone level and masking. Journal of the Acoustical Society of America, 2012, 132, 2524-2535.	1.1	14
139	Automaticity and primacy of auditory streaming: Concurrent subjective and objective measures Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 339-353.	0.9	14
140	Detection of small across-channel timing differences by cochlear implantees. Hearing Research, 2000, 141, 140-154.	2.0	13
141	Simulations of cochlear-implant speech perception in modulated and unmodulated noise. Journal of the Acoustical Society of America, 2010, 128, 870-880.	1.1	13
142	Detection of Mistuning in Harmonic Complex Tones at High Frequencies. Acta Acustica United With Acustica, 2018, 104, 766-769.	0.8	13
143	Performance measures of auditory organization. , 2005, , 202-210.		12
144	Further examination of complex pitch perception in the absence of a placerate match. Journal of the Acoustical Society of America, 2013, 133, 377-388.	1.1	12

#	Article	IF	CITATIONS
145	Procedural Factors That Affect Psychophysical Measures of Spatial Selectivity in Cochlear Implant Users. Trends in Hearing, 2015, 19, 233121651560706.	1.3	12
146	Effect of Pulse Rate and Polarity on the Sensitivity of Auditory Brainstem and Cochlear Implant Users to Electrical Stimulation. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 653-668.	1.8	12
147	The effect of increased channel interaction on speech perception with cochlear implants. Scientific Reports, 2021, 11, 10383.	3.3	12
148	Spread of excitation produced by maskers with damped and ramped envelopes. Journal of the Acoustical Society of America, 1996, 99, 3647-3655.	1.1	11
149	Reduced contribution of a nonsimultaneous mistuned harmonic to residue pitch. Journal of the Acoustical Society of America, 2005, 118, 3783-3793.	1.1	11
150	Pitch discrimination interference between binaural and monaural or diotic pitches. Journal of the Acoustical Society of America, 2009, 126, 281-290.	1.1	11
151	Evaluation of a cochlear-implant processing strategy incorporating phantom stimulation and asymmetric pulses. International Journal of Audiology, 2014, 53, 871-879.	1.7	11
152	Frequency following responses and rate change complexes in cochlear implant users. Hearing Research, 2021, 404, 108200.	2.0	11
153	Continuous versus discrete frequency changes: Different detection mechanisms?. Journal of the Acoustical Society of America, 2009, 125, 1082-1090.	1.1	10
154	Changes in the perceived duration of a narrowband sound induced by a preceding stimulus Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1898-1912.	0.9	10
155	Using Zebra-speech to study sequential and simultaneous speech segregation in a cochlear-implant simulation. Journal of the Acoustical Society of America, 2013, 133, 502-518.	1.1	10
156	Spatial Selectivity in Cochlear Implants: Effects of Asymmetric Waveforms and Development of a Single-Point Measure. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 711-727.	1.8	10
157	Effects of the relative timing of opposite-polarity pulses on loudness for cochlear implant listeners. Journal of the Acoustical Society of America, 2018, 144, 2751-2763.	1.1	10
158	A Cross-Sectional Questionnaire Study of Tinnitus Awareness and Impact in a Population of Adult Cochlear Implant Users. Ear and Hearing, 2019, 40, 135-142.	2.1	10
159	The effect of a coding strategy that removes temporally masked pulses on speech perception by cochlear implant users. Hearing Research, 2020, 391, 107969.	2.0	10
160	Objective Measures of Auditory Scene Analysis. , 2010, , 507-519.		10
161	Detection of signals having expected and unexpected temporal structures. Hearing Research, 1997, 112, 141-146.	2.0	9
162	Temporal pitch perception and the binaural system. Journal of the Acoustical Society of America, 2001, 109, 686-700.	1.1	9

#	Article	IF	CITATIONS
163	Effect of modulator asynchrony of sinusoidal and noise modulators on frequency and amplitude modulation detection interference. Journal of the Acoustical Society of America, 2002, 112, 2975-2984.	1.1	9
164	Further examination of pitch discrimination interference between complex tones containing resolved harmonics. Journal of the Acoustical Society of America, 2009, 125, 1059-1066.	1.1	9
165	Evaluating the Noise in Electrically Evoked Compound Action Potential Measurements in Cochlear Implants. IEEE Transactions on Biomedical Engineering, 2012, 59, 1912-1923.	4.2	9
166	The perception of octave pitch affinity and harmonic fusion have a common origin. Hearing Research, 2021, 404, 108213.	2.0	9
167	Pitch perception at very high frequencies: On psychometric functions and integration of frequency information. Journal of the Acoustical Society of America, 2020, 148, 3322-3333.	1.1	9
168	Frequency modulation detection interference produced by asynchronous and nonsimultaneous interferers. Journal of the Acoustical Society of America, 2000, 108, 2329-2336.	1.1	8
169	Combination of Spectral and Binaurally Created Harmonics in a Common Central Pitch Processor. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 253-260.	1.8	8
170	Temporal Regularity Detection and Rate Discrimination in Cochlear-Implant Listeners. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 387-397.	1.8	8
171	Relationships Between Auditory Nerve Activity and Temporal Pitch Perception in Cochlear Implant Users. Advances in Experimental Medicine and Biology, 2013, 787, 363-371.	1.6	7
172	The role of excitation-pattern cues in the detection of frequency shifts in bandpass-filtered complex tones. Journal of the Acoustical Society of America, 2015, 137, 2687-2697.	1.1	7
173	Using Spectral Blurring to Assess Effects of Channel Interaction on Speech-in-Noise Perception with Cochlear Implants. JARO - Journal of the Association for Research in Otolaryngology, 2020, 21, 353-371.	1.8	7
174	An Instrumented Cochlea Model for the Evaluation of Cochlear Implant Electrical Stimulus Spread. IEEE Transactions on Biomedical Engineering, 2021, 68, 2281-2288.	4.2	7
175	Combining information across frequency regions in fundamental frequency discrimination. Journal of the Acoustical Society of America, 2010, 127, 2466-2478.	1.1	6
176	No Evidence for ITD-Specific Adaptation in the Frequency Following Response. Advances in Experimental Medicine and Biology, 2013, 787, 231-238.	1.6	6
177	Using Interleaved Stimulation to Measure the Size and Selectivity of the Sustained Phase-Locked Neural Response to Cochlear Implant Stimulation. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 141-159.	1.8	6
178	Management of Severe Facial Nerve Cross Stimulation by Cochlear Implant Replacement to Change Pulse Shape and Grounding Configuration: A Case-series. Otology and Neurotology, 2022, 43, 452-459.	1.3	6
179	Evaluation of Possible Effects of a Potassium Channel Modulator on Temporal Processing by Cochlear Implant Listeners. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 669-680.	1.8	5
180	Effect of Chronic Stimulation and Stimulus Level on Temporal Processing by Cochlear Implant Listeners. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 169-185.	1.8	5

#	Article	IF	CITATIONS
181	Effects of Harmonicity and Regularity on the Perception of Sound Sources. , 2008, , 191-213.		5
182	Effect of the Relative Timing between Same-Polarity Pulses on Thresholds and Loudness in Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2020, 21, 497-510.	1.8	4
183	Further simulations of the effect of cochlear-implant pre-processing and head movement on interaural level differences. Journal of the Acoustical Society of America, 2021, 150, 506-525.	1.1	4
184	Effects of Attention on Auditory Perceptual Organization. , 2005, , 317-323.		4
185	Tonotopic Selectivity in Cats and Humans: Electrophysiology and Psychophysics. JARO - Journal of the Association for Research in Otolaryngology, 2022, 23, 513-534.	1.8	4
186	Reduced contribution of a nonsimultaneous mistuned harmonic to residue pitch: The role of harmonic number. Journal of the Acoustical Society of America, 2009, 125, 15-18.	1.1	3
187	On Zwicker tones and musical pitch in the likely absence of phase locking corresponding to the pitch. Journal of the Acoustical Society of America, 2016, 140, 2257-2273.	1.1	3
188	The Effect of Phantom Stimulation and Pseudomonophasic Pulse Shapes on Pitch Perception by Cochlear Implant Listeners. JARO - Journal of the Association for Research in Otolaryngology, 2020, 21, 511-526.	1.8	3
189	The Effect of Free-Field Presentation and Processing Strategy on a Measure of Spectro-Temporal Processing by Cochlear-Implant Listeners. Trends in Hearing, 2020, 24, 233121652096428.	1.3	3
190	Detection of Extracochlear Electrodes Using Stimulation-Current- Induced Non-Stimulating Electrode Voltage Recordings With Different Electrode Designs. Otology and Neurotology, 2022, 43, e548-e557.	1.3	3
191	Temporal Pitch Sensitivity in an Animal Model: Psychophysics and Scalp Recordings. JARO - Journal of the Association for Research in Otolaryngology, 2022, 23, 491-512.	1.8	3
192	Perception of stochastic envelopes by normal-hearing and cochlear-implant listeners. Hearing Research, 2016, 333, 8-24.	2.0	2
193	A Re-examination of the Effect of Masker Phase Curvature on Non-simultaneous Masking. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 815-825.	1.8	2
194	On musical interval perception for complex tones at very high frequencies. Journal of the Acoustical Society of America, 2021, 149, 2644-2658.	1.1	2
195	Central Auditory Masking by an Illusory Tone. PLoS ONE, 2013, 8, e75822.	2.5	1
196	Effect of Context on the Contribution of Individual Harmonics to Residue Pitch. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 803-813.	1.8	1
197	Modulation Depth Discrimination by Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2022, , 1.	1.8	1
198	On mistuning detection and beat perception for harmonic complex tones at low and very high frequencies. Journal of the Acoustical Society of America, 2022, 152, 226-239.	1.1	0