List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5346237/publications.pdf Version: 2024-02-01

		66343	20358
142	15,465	42	116
papers	citations	h-index	g-index
151 all docs	151 docs citations	151 times ranked	24888 citing authors

#	Article	IF	CITATIONS
1	Serum antinuclear autoantibodies are associated with measures of oxidative stress and lifestyle factors: analysis of LIPIDOGRAM2015 and LIPIDOGEN2015 studies. Archives of Medical Science, 2023, 19, 1214-1227.	0.9	2
2	2022 World Hypertension League, Resolve To Save Lives and International Society of Hypertension dietary sodium (salt) global call to action. Journal of Human Hypertension, 2023, 37, 428-437.	2.2	22
3	Adjustment for body mass index changes inverse associations of HDL-cholesterol with blood pressure and hypertension to positive associations. Journal of Human Hypertension, 2022, 36, 570-579.	2.2	8
4	Analysis of the impact of sex and age on the variation in the prevalence of antinuclear autoantibodies in Polish population: a nationwide observational, cross-sectional study. Rheumatology International, 2022, 42, 261-271.	3.0	5
5	Relationship Between Anti-DFS70 Autoantibodies and Oxidative Stress. Biomarker Insights, 2022, 17, 117727192110667.	2.5	1
6	Contributions of obesity to kidney health and disease: insights from Mendelian randomization and the human kidney transcriptomics. Cardiovascular Research, 2022, 118, 3151-3161.	3.8	17
7	Kidney omics in hypertension: from statistical associations to biological mechanisms and clinical applications. Kidney International, 2022, 102, 492-505.	5.2	11
8	Hyperuricemia is independently associated with hypertension in men under 60 years in a general Chinese population. Journal of Human Hypertension, 2021, 35, 1020-1028.	2.2	19
9	Exercise, epigenetics, and aging. , 2021, , 127-182.		1
10	Prospective meta-analysis protocol on randomised trials of renin–angiotensin system inhibitors in patients with COVID-19: an initiative of the International Society of Hypertension. BMJ Open, 2021, 11, e043625.	1.9	11
11	Plasma lipocalin-2/NGAL is stable over 12Âweeks and is not modulated by exercise or dieting. Scientific Reports, 2021, 11, 4056.	3.3	7
12	Epigenome-wide association study of kidney function identifies trans-ethnic and ethnic-specific loci. Genome Medicine, 2021, 13, 74.	8.2	20
13	A Modified MTS Proliferation Assay for Suspended Cells to Avoid the Interference by Hydralazine and β-Mercaptoethanol. Assay and Drug Development Technologies, 2021, 19, 184-190.	1.2	7
14	Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney. Nature Genetics, 2021, 53, 630-637.	21.4	37
15	Plasma Proteomics of Renal Function: A Transethnic Meta-Analysis and Mendelian Randomization Study. Journal of the American Society of Nephrology: JASN, 2021, 32, 1747-1763.	6.1	16
16	Establishment of sex difference in circulating uric acid is associated with higher testosterone and lower sex hormone-binding globulin in adolescent boys. Scientific Reports, 2021, 11, 17323.	3.3	32
17	Deficiency of MicroRNA-181a Results in Transcriptome-Wide Cell-Specific Changes in the Kidney and Increases Blood Pressure. Hypertension, 2021, 78, 1322-1334.	2.7	3
18	Secondary Stroke Prevention in Polish Adults: Results from the LIPIDOGRAM2015 Study. Journal of Clinical Medicine, 2021, 10, 4472.	2.4	2

#	Article	IF	CITATIONS
19	Reduced renal function may explain the higher prevalence of hyperuricemia in older people. Scientific Reports, 2021, 11, 1302.	3.3	22
20	The Differences in the Prevalence of Cardiovascular Disease, Its Risk Factors, and Achievement of Therapeutic Goals among Urban and Rural Primary Care Patients in Poland: Results from the LIPIDOGRAM 2015 Study. Journal of Clinical Medicine, 2021, 10, 5656.	2.4	9
21	Noncoding Genes on Sex Chromosomes and Their Function in Sex Determination, Dosage Compensation, Male Traits, and Diseases. Sexual Development, 2021, 15, 432-440.	2.0	3
22	DNA copy number variations – Do these big mutations have a big effect on cardiovascular risk?. International Journal of Cardiology, 2020, 298, 116-117.	1.7	1
23	Hypertension and renin-angiotensin system blockers are not associated with expression of angiotensin-converting enzyme 2 (ACE2) in the kidney. European Heart Journal, 2020, 41, 4580-4588.	2.2	41
24	Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nature Genetics, 2020, 52, 1314-1332.	21.4	91
25	An Improved 3-(4,5-Dimethylthiazol-2-yl)-5-(3-Carboxymethoxyphenyl)-2-(4-Sulfophenyl)-2H-Tetrazolium Proliferation Assay to Overcome the Interference of Hydralazine. Assay and Drug Development Technologies, 2020, 18, 379-384.	1.2	6
26	May Measurement Month 2019. Hypertension, 2020, 76, 333-341.	2.7	157
27	Neural suppression of miRNA-181a in the kidney elevates renin expression and exacerbates hypertension in Schlager mice. Hypertension Research, 2020, 43, 1152-1164.	2.7	11
28	2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension, 2020, 75, 1334-1357.	2.7	1,895
29	2020 International Society of Hypertension global hypertension practice guidelines. Journal of Hypertension, 2020, 38, 982-1004.	0.5	452
30	The prevalence of cardiovascular risk factors and cardiovascular disease among primary care patients in Poland: results from the LIPIDOGRAM2015 study. Atherosclerosis Supplements, 2020, 42, e15-e24.	1.2	18
31	A Guide to the Short, Long and Circular RNAs in Hypertension and Cardiovascular Disease. International Journal of Molecular Sciences, 2020, 21, 3666.	4.1	16
32	Design and rationale of a nationwide screening analysis from the LIPIDOGRAM2015 and LIPIDOGEN2015 studies. Archives of Medical Science, 2020, 18, 604-616.	0.9	9
33	The Association Between Selected Molecular Biomarkers and Ambulatory Blood Pressure Patterns in African Chronic Kidney Disease and Hypertensive Patients Compared With Normotensive Controls: Protocol for a Longitudinal Study. JMIR Research Protocols, 2020, 9, e14820.	1.0	0
34	Highlights from the International Society of Hypertension's New Investigators Network during 2019. Journal of Hypertension, 2020, 38, 968-973.	0.5	1
35	Reply. Journal of Hypertension, 2020, 38, 2341.	0.5	0
36	Human Y Chromosome Exerts Pleiotropic Effects on Susceptibility to Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2386-2401.	2.4	36

#	Article	IF	CITATIONS
37	May Measurement Month 2017: Results of 39 national blood pressure screening programmes. European Heart Journal Supplements, 2019, 21, D1-D4.	0.1	13
38	May Measurement Month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension. European Heart Journal, 2019, 40, 2006-2017.	2.2	193
39	Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. Kidney International, 2019, 95, 624-635.	5.2	40
40	Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nature Communications, 2019, 10, 29.	12.8	113
41	Renal nerves contribute to hypertension in Schlager BPH/2J mice. Hypertension Research, 2019, 42, 306-318.	2.7	13
42	Molecular insights into genome-wide association studies of chronic kidney disease-defining traits. Nature Communications, 2018, 9, 4800.	12.8	52
43	Body mass index is negatively associated with telomere length: a collaborative cross-sectional meta-analysis of 87 observational studies. American Journal of Clinical Nutrition, 2018, 108, 453-475.	4.7	137
44	May Measurement Month 2017: an analysis of blood pressure screening results worldwide. The Lancet Global Health, 2018, 6, e736-e743.	6.3	245
45	Are the American Heart Association/American College of Cardiology High Blood Pressure Guidelines Fit for Global Purpose?: Thoughts From the International Society of Hypertension. Hypertension, 2018, 72, 260-262.	2.7	20
46	Cardiomyocyte Functional Etiology in Heart Failure With Preserved Ejection Fraction Is Distinctive—A New Preclinical Model. Journal of the American Heart Association, 2018, 7, .	3.7	27
47	Telomeres, exercise and cardiovascular disease: finding the means to justify the ends. Acta Physiologica, 2017, 220, 186-188.	3.8	2
48	Experimental and Human Evidence for Lipocalinâ€2 (Neutrophil Gelatinaseâ€Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and Heart Failure. Journal of the American Heart Association, 2017, 6, .	3.7	59
49	Genetics of blood pressure. Journal of Hypertension, 2017, 35, 1360-1362.	0.5	1
50	Cardiac telomere length in heart development, function, and disease. Physiological Genomics, 2017, 49, 368-384.	2.3	31
51	Genetic variation within the Y chromosome is not associated with histological characteristics of the atherosclerotic carotid artery or aneurysmal wall. Atherosclerosis, 2017, 259, 114-119.	0.8	6
52	The Y chromosome: a blueprint for men's health?. European Journal of Human Genetics, 2017, 25, 1181-1188.	2.8	90
53	A Novel Y-Specific Long Non-Coding RNA Associated with Cellular Lipid Accumulation in HepG2 cells and Atherosclerosis-related Genes. Scientific Reports, 2017, 7, 16710.	3.3	28
54	Micro <scp>RNA</scp> s in a hypertrophic heart: from foetal life to adulthood. Biological Reviews, 2017, 92, 1314-1331.	10.4	8

#	Article	IF	CITATIONS
55	Telomeres, Aging and Exercise: Guilty by Association?. International Journal of Molecular Sciences, 2017, 18, 2573.	4.1	29
56	Epigenetic Modifications in Essential Hypertension. International Journal of Molecular Sciences, 2016, 17, 451.	4.1	81
57	Aortic augmentation index in endurance athletes: a role for cardiorespiratory fitness. European Journal of Applied Physiology, 2016, 116, 1537-1544.	2.5	21
58	Epigenetic changes in leukocytes after 8Âweeks of resistance exercise training. European Journal of Applied Physiology, 2016, 116, 1245-1253.	2.5	56
59	Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres. Journal of Applied Physiology, 2016, 120, 148-158.	2.5	53
60	Circulating microRNAs and hypertension—from new insights into blood pressure regulation to biomarkers of cardiovascular risk. Current Opinion in Pharmacology, 2016, 27, 1-7.	3.5	46
61	Coronary Artery Disease: Why We should Consider the Y Chromosome. Heart Lung and Circulation, 2016, 25, 791-801.	0.4	19
62	Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nature Communications, 2016, 7, 10023.	12.8	412
63	Telomere dynamics during aging in polygenic left ventricular hypertrophy. Physiological Genomics, 2016, 48, 42-49.	2.3	14
64	Tripartite motif-containing 55 identified as functional candidate for spontaneous cardiac hypertrophy in the rat locus cardiac mass 22. Journal of Hypertension, 2016, 34, 950-958.	0.5	5
65	Telomere Length Maintenance and Cardio-Metabolic Disease Prevention Through Exercise Training. Sports Medicine, 2016, 46, 1213-1237.	6.5	61
66	A multi-omics glimpse into the biology of arterial stiffness. Journal of Hypertension, 2016, 34, 32-35.	0.5	2
67	Across the globe in 4 months. Journal of Hypertension, 2015, 33, 891-893.	0.5	1
68	Signatures of miR-181a on the Renal Transcriptome and Blood Pressure. Molecular Medicine, 2015, 21, 739-748.	4.4	48
69	Contribution of microRNA to pathological fibrosis in cardio-renal syndrome: impact of uremic toxins. Physiological Reports, 2015, 3, e12371.	1.7	27
70	microRNAs in Essential Hypertension and Blood Pressure Regulation. Advances in Experimental Medicine and Biology, 2015, 888, 215-235.	1.6	30
71	MicroRNAs mediate the cardioprotective effect of angiotensin-converting enzyme inhibition in acute kidney injury. American Journal of Physiology - Renal Physiology, 2015, 309, F943-F954.	2.7	17
72	Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. Journal of Applied Physiology, 2015, 118, 475-488.	2.5	67

#	Article	IF	CITATIONS
73	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	27.8	1,328
74	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	27.8	3,823
75	Runs of Homozygosity: Association with Coronary Artery Disease and Gene Expression in Monocytes and Macrophages. American Journal of Human Genetics, 2015, 97, 228-237.	6.2	37
76	Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans. Epigenomics, 2015, 7, 717-731.	2.1	127
77	Renal Mechanisms of Association between Fibroblast Growth Factor 1 and Blood Pressure. Journal of the American Society of Nephrology: JASN, 2015, 26, 3151-3160.	6.1	20
78	The emerging role of non-coding RNA in essential hypertension and blood pressure regulation. Journal of Human Hypertension, 2015, 29, 459-467.	2.2	38
79	Acute Exercise Leads to Regulation of Telomere-Associated Genes and MicroRNA Expression in Immune Cells. PLoS ONE, 2014, 9, e92088.	2.5	88
80	The Relation of Rapid Changes in Obesity Measures to Lipid Profile - Insights from a Nationwide Metabolic Health Survey in 444 Polish Cities. PLoS ONE, 2014, 9, e86837.	2.5	15
81	Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death and Disease, 2014, 5, e1325-e1325.	6.3	50
82	Leukocyte telomere length variation due to DNA extraction method. BMC Research Notes, 2014, 7, 877.	1.4	37
83	Coronary artery disease predisposing haplogroup I of the YÂchromosome, aggression and sex steroids – Genetic associationÂanalysis. Atherosclerosis, 2014, 233, 160-164.	0.8	21
84	Exercise: Putting Action into Our Epigenome. Sports Medicine, 2014, 44, 189-209.	6.5	105
85	Measurement of absolute copy number variation reveals association with essential hypertension. BMC Medical Genomics, 2014, 7, 44.	1.5	22
86	Consumption of a low glycaemic index diet in late life extends lifespan of Balb/c mice with differential effects on DNA damage. Longevity & Healthspan, 2013, 2, 4.	6.7	10
87	Early Treatment to Prevent Hypertension: A Laudable Goal. American Journal of Hypertension, 2013, 26, 1367-1368.	2.0	2
88	A Novel Interaction Between Sympathetic Overactivity and Aberrant Regulation of Renin by miR-181a in BPH/2J Genetically Hypertensive Mice. Hypertension, 2013, 62, 775-781.	2.7	72
89	Male-Specific Region of the Y Chromosome and Cardiovascular Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1722-1727.	2.4	57
90	Genetic mechanisms of vascular and renal damage. Journal of Hypertension, 2013, 31, 2128-2129.	0.5	1

#	Article	IF	CITATIONS
91	Salt Loading in Canola Oil Fed SHRSP Rats Induces Endothelial Dysfunction. PLoS ONE, 2013, 8, e66655.	2.5	5
92	Longer Leukocyte Telomeres Are Associated with Ultra-Endurance Exercise Independent of Cardiovascular Risk Factors. PLoS ONE, 2013, 8, e69377.	2.5	84
93	Urotensin-II System in Genetic Control of Blood Pressure and Renal Function. PLoS ONE, 2013, 8, e83137.	2.5	14
94	Diurnal difference in sympathetic stimulation and microRNA regulation of renin in Schlager hypertensive mice. FASEB Journal, 2013, 27, 695.13.	0.5	0
95	Inheritance of coronary artery disease in men: an analysis of the role of the Y chromosome. Lancet, The, 2012, 379, 915-922.	13.7	179
96	Inheritance of coronary artery disease in men – Authors' reply. Lancet, The, 2012, 379, 2425.	13.7	1
97	A MicroRNA Guide for Clinicians and Basic Scientists: Background and Experimental Techniques. Heart Lung and Circulation, 2012, 21, 131-142.	0.4	78
98	Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 2011, 478, 103-109.	27.8	1,855
99	Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nature Genetics, 2011, 43, 1131-1138.	21.4	501
100	ISH Hypertension Future Leaders Group. Journal of Hypertension, 2011, 29, 1664-1665.	0.5	4
101	The Epithelial Sodium Channel γ-Subunit Gene and Blood Pressure. Hypertension, 2011, 58, 1073-1078.	2.7	19
102	Pathway Analysis Shows Association between FGFBP1 and Hypertension. Journal of the American Society of Nephrology: JASN, 2011, 22, 947-955.	6.1	27
103	Gene Expression Profiling Reveals Renin mRNA Overexpression in Human Hypertensive Kidneys and a Role for MicroRNAs. Hypertension, 2011, 58, 1093-1098.	2.7	208
104	FGF21 signalling pathway and metabolic traits – genetic association analysis. European Journal of Human Genetics, 2010, 18, 1344-1348.	2.8	22
105	Whole Genome Survey of Copy Number Variation in the Spontaneously Hypertensive Rat. Hypertension, 2010, 55, 1231-1238.	2.7	20
106	Genetic Architecture of Ambulatory Blood Pressure in the General Population. Hypertension, 2010, 56, 1069-1076.	2.7	64
107	A Common Variant in Low-Density Lipoprotein Receptor–Related Protein 6 Gene (LRP6) Is Associated With LDL-Cholesterol. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1316-1321.	2.4	37
108	Inverse Associations Between Androgens and Renal Function: The Young Men Cardiovascular Association (YMCA) Study. American Journal of Hypertension, 2009, 22, 100-105.	2.0	18

#	Article	IF	CITATIONS
109	Association between lipid profile and circulating concentrations of estrogens in young men. Atherosclerosis, 2009, 203, 257-262.	0.8	27
110	The pressure of finding human hypertension genes: new tools, old dilemmas. Journal of Human Hypertension, 2008, 22, 821-828.	2.2	23
111	SLC2A9 Is a High-Capacity Urate Transporter in Humans. PLoS Medicine, 2008, 5, e197.	8.4	305
112	Association studies in current cardiovascular genetics – functional variants, tags or both?. Journal of Human Hypertension, 2007, 21, 425-426.	2.2	5
113	Fibroblast Growth Factor 1 Gene and Hypertension. Circulation, 2007, 116, 1915-1924.	1.6	28
114	Genetic Dissection of a Blood Pressure Quantitative Trait Locus on Rat Chromosome 1 and Gene Expression Analysis Identifies SPON1 As a Novel Candidate Hypertension Gene. Circulation Research, 2007, 100, 992-999.	4.5	38
115	Glomerular hyperfiltration: A new marker of metabolic risk. Kidney International, 2007, 71, 816-821.	5.2	200
116	Studies of an Association in Boys of Blood Pressure and the Y Chromosome. American Journal of Hypertension, 2007, 20, 27-31.	2.0	21
117	Functional significance of single nucleotide polymorphisms within the 5′-flanking region of β2-adrenergic receptor gene. Journal of Hypertension, 2006, 24, 2473-2474.	0.5	3
118	Genetic information in the diagnosis and treatment of hypertension. Current Hypertension Reports, 2006, 8, 309-316.	3.5	15
119	Genetic determinants of metabolic syndrome components in the stroke-prone spontaneously hypertensive rat. Journal of Hypertension, 2005, 23, 2179-2186.	0.5	24
120	Hypertension genetics: under pressure. , 2005, , .		0
121	Cardiovascular Genomics and Oxidative Stress. Hypertension, 2005, 45, 636-642.	2.7	21
122	Letter re: Inflammation and Lipoprotein Changes with Protracted Exercise. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4981-4981.	3.6	1
123	Epistatic Interaction Between β 2 -Adrenergic Receptor and Neuropeptide Y Genes Influences LDL-Cholesterol in Hypertension. Hypertension, 2004, 44, 689-694.	2.7	24
124	Association of the Human Y Chromosome with Cholesterol Levels in the General Population. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 308-312.	2.4	67
125	Genetics of Hypertension: Lessons Learnt from Mendelian and Polygenic Syndromes. Clinical and Experimental Hypertension, 2004, 26, 611-620.	1.3	13
126	Functional genomics in rodent models of hypertension. Journal of Physiology, 2004, 554, 56-63.	2.9	20

#	Article	IF	CITATIONS
127	Serum C-reactive protein and lipids in ultra-Marathon runners. American Journal of Cardiology, 2004, 94, 125-126.	1.6	22
128	Y CHROMSOME VARIANT IS A PREDICTOR OF CARDIOVASCULAR MORTALITY. Journal of Hypertension, 2004, 22, S58-S59.	0.5	0
129	LONG-TERM ASSOCIATION OF THE Y CHROMOSOME AND BLOOD PRESSURE IN BOYS AT THE PRE- AND POST-PUBERTAL PERIODS. Journal of Hypertension, 2004, 22, S181.	0.5	0
130	Cardiovascular diseases and G-protein β3 subunit gene (GNB3) in the era of genomewide scans. Journal of Human Hypertension, 2003, 17, 379-380.	2.2	3
131	Comparative and functional analyses of LYL1 loci establish marsupial sequences as a model for phylogenetic footprintingâ~† â~†Sequence data from this article have been deposited with the DDBJ/EMBL/GenBank Data Libraries under Accession No. AL731834 Genomics, 2003, 81, 249-259.	2.9	42
132	Y is there a risk to being male?. Trends in Endocrinology and Metabolism, 2003, 14, 163-168.	7.1	41
133	Complex Events in the Evolution of the Human Pseudoautosomal Region 2 (PAR2). Genome Research, 2003, 13, 281-286.	5.5	63
134	Microarray Analysis of Rat Chromosome 2 Congenic Strains. Hypertension, 2003, 41, 847-853.	2.7	76
135	Strikingly Low Circulating CRP Concentrations in Ultramarathon Runners Independent of Markers of Adiposity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1640-1644.	2.4	81
136	Essential Hypertension and \hat{I}^2 2 -Adrenergic Receptor Gene. Hypertension, 2002, 40, 286-291.	2.7	72
137	Genetic Aspects of Stroke: Human and Experimental Studies. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 767-773.	4.3	33
138	The Y Chromosome Effect on Blood Pressure in Two European Populations. Hypertension, 2002, 39, 353-356.	2.7	78
139	Genetic and gender determinants of cerebrovascular disease. Seminars in Nephrology, 2002, 22, 127-134.	1.6	7
140	Persistent Reduction in Renal Nerve Growth Factor mRNA After Perindopril Treatment of Young Spontaneously Hypertensive Rats. Hypertension, 1998, 31, 678-683.	2.7	11
141	Nerve Growth Factor Gene Locus Explains Elevated Renal Nerve Growth Factor mRNA in Young Spontaneously Hypertensive Rats. Hypertension, 1998, 32, 705-709.	2.7	16
142	Nerve growth factor gene and hypertension in spontaneously hypertensive rats. Journal of Hypertension, 1996, 14, 191-197.	0.5	32