Mirco Ponzoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5345960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MiR-486-5p Targets CD133+ Lung Cancer Stem Cells through the p85/AKT Pathway. Pharmaceuticals, 2022, 15, 297.	3.8	10
2	The Pyrazolo[3,4-d]Pyrimidine Derivative Si306 Encapsulated into Anti-GD2-Immunoliposomes as Therapeutic Treatment of Neuroblastoma. Biomedicines, 2022, 10, 659.	3.2	6
3	Recent advances in the developmental origin of neuroblastoma: an overview. Journal of Experimental and Clinical Cancer Research, 2022, 41, 92.	8.6	46
4	Enhanced therapeutic index of liposomal doxorubicin Myocet locally delivered by fibrin gels in immunodeficient mice bearing human neuroblastoma. Pharmacological Research, 2021, 163, 105294.	7.1	4
5	Bone Marrow Environment in Metastatic Neuroblastoma. Cancers, 2021, 13, 2467.	3.7	5
6	Cell surface Nucleolin represents a novel cellular target for neuroblastoma therapy. Journal of Experimental and Clinical Cancer Research, 2021, 40, 180.	8.6	27
7	The Olive Leaves Extract Has Anti-Tumor Effects against Neuroblastoma through Inhibition of Cell Proliferation and Induction of Apoptosis. Nutrients, 2021, 13, 2178.	4.1	15
8	Cotargeting of miRâ€126â€3p and miRâ€221â€3p inhibits PIK3R2 and PTEN, reducing lung cancer growth and metastasis by blocking AKT and CXCR4 signalling. Molecular Oncology, 2021, 15, 2969-2988.	4.6	16
9	Retinoids Delivery Systems in Cancer: Liposomal Fenretinide for Neuroectodermal-Derived Tumors. Pharmaceuticals, 2021, 14, 854.	3.8	8
10	A combination of PARP and CHK1 inhibitors efficiently antagonizes MYCN-driven tumors. Oncogene, 2021, 40, 6143-6152.	5.9	16
11	A Focus on Regulatory Networks Linking MicroRNAs, Transcription Factors and Target Genes in Neuroblastoma. Cancers, 2021, 13, 5528.	3.7	16
12	Increased myocardial 18F-FDG uptake as a marker of Doxorubicin-induced oxidative stress. Journal of Nuclear Cardiology, 2020, 27, 2183-2194.	2.1	29
13	Targeting Vesicular LGALS3BP by an Antibody-Drug Conjugate as Novel Therapeutic Strategy for Neuroblastoma. Cancers, 2020, 12, 2989.	3.7	16
14	Autophagic flux inhibition enhances cytotoxicity of the receptor tyrosine kinase inhibitor ponatinib. Journal of Experimental and Clinical Cancer Research, 2020, 39, 195.	8.6	12
15	Combined Replenishment of miRâ€34a and letâ€7b by Targeted Nanoparticles Inhibits Tumor Growth in Neuroblastoma Preclinical Models. Small, 2020, 16, e1906426.	10.0	27
16	Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. Journal of Controlled Release, 2019, 308, 44-56.	9.9	41
17	Overcoming Biological Barriers in Neuroblastoma Therapy: The Vascular Targeting Approach with Liposomal Drug Nanocarriers. Small, 2019, 15, e1804591.	10.0	34
18	Fibrin Gels Entrapment of a Poly-Cyclodextrin Nanocarrier as a Doxorubicin Delivery System in an Orthotopic Model of Neuroblastoma: Evaluation of In Vitro Activity and In Vivo Toxicity. Pharmaceutical Research, 2019, 36, 115.	3.5	14

#	Article	IF	CITATIONS
19	Microfragmented human fat tissue is a natural scaffold for drug delivery: Potential application in cancer chemotherapy. Journal of Controlled Release, 2019, 302, 2-18.	9.9	26
20	Spatiotemporal Regulation of Tumor Angiogenesis by Circulating Chromogranin A Cleavage and Neuropilin-1 Engagement. Cancer Research, 2019, 79, 1925-1937.	0.9	9
21	Gut Bacteria and their Metabolites: Which One Is the Defendant for Colorectal Cancer?. Microorganisms, 2019, 7, 561.	3.6	25
22	Fibrin gels entrapment of a doxorubicin-containing targeted polycyclodextrin: Evaluation of in vivo antitumor activity in orthotopic models of human neuroblastoma. Toxicology and Applied Pharmacology, 2019, 385, 114811.	2.8	5
23	Preclinical evaluation of the first intravenous small molecule MDM2 antagonist alone and in combination with temozolomide in neuroblastoma. International Journal of Cancer, 2019, 144, 3146-3159.	5.1	23
24	Abstract 2160: Microfragmented human fat tissue is a natural scaffold for drug delivery: potential application in cancer chemotherapy. , 2019, , .		0
25	Abstract A101: Nucleolin: A novel cell surface protein for neuroblastoma targeted therapy. , 2019, , .		0
26	Novel Immunotherapeutic Approaches for Neuroblastoma and Malignant Melanoma. Journal of Immunology Research, 2018, 2018, 1-12.	2.2	11
27	Enhancement of Tumor Homing by Chemotherapy‣oaded Nanoparticles. Small, 2018, 14, e1802886.	10.0	23
28	Targeting Macrophages as a Potential Therapeutic Intervention: Impact on Inflammatory Diseases and Cancer. International Journal of Molecular Sciences, 2018, 19, 1953.	4.1	117
29	Updated clinical and biological information from the two-stage phase II study of imatinib mesylate in subjects with relapsed/refractory neuroblastoma. OncoImmunology, 2018, 7, e1468953.	4.6	9
30	Abstract 3879: Enhancement of tumor penetration by drug-loaded nanoparticles: An innovative targeted strategy for neuroblastoma. , 2018, , .		0
31	Molecular galactose–galectin association in neuroblastoma cells: An unconventional tool for qualitative/quantitative screening. Proteomics - Clinical Applications, 2017, 11, 1600116.	1.6	3
32	A Proof-of-Concept for Epigenetic Therapy of Tissue Fibrosis: Inhibition of Liver Fibrosis Progression by 3-Deazaneplanocin A. Molecular Therapy, 2017, 25, 218-231.	8.2	65
33	Investigational drugs in phase II clinical trials for the treatment of neuroblastoma. Expert Opinion on Investigational Drugs, 2017, 26, 1281-1293.	4.1	16
34	Glycine <i>N</i> â€Methylation in NGRâ€Tagged Nanocarriers Prevents Isoaspartate Formation and Integrin Binding without Impairing CD13 Recognition and Tumor Homing. Advanced Functional Materials, 2017, 27, 1701245.	14.9	19
35	Doxorubicin Effect on Myocardial Metabolism as a Prerequisite for Subsequent Development of Cardiac Toxicity: A Translational ¹⁸ F-FDG PET/CT Observation. Journal of Nuclear Medicine, 2017, 58, 1638-1645.	5.0	65
36	Liposomal Chemotherapy. , 2017, , 2520-2524.		0

Liposomal Chemotherapy., 2017, , 2520-2524. 36

#	Article	IF	CITATIONS
37	Abstract LB-300: In vivo evaluation of the intravenous MDM2-p53 antagonist RO6839921 alone and in combination with temozolomide inTP53wild-type orthotopic models of neuroblastoma. , 2017, , .		1
38	Abstract 5130: Tumor-penetrating peptide-coated nanoparticles as a novel strategy for the targeted therapy of neuroblastoma. , 2017, , .		0
39	Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt. Scientific Reports, 2016, 6, 25092.	3.3	67
40	A new fluorescence-based optical imaging method to non-invasively monitor hepatic myofibroblasts in vivo. Journal of Hepatology, 2016, 65, 75-83.	3.7	15
41	A novel liposomal Clodronate depletes tumor-associated macrophages in primary and metastatic melanoma: Anti-angiogenic and anti-tumor effects. Journal of Controlled Release, 2016, 223, 165-177.	9.9	89
42	Abstract 5112: Galactose probes hit neuroblastoma cells through a specific galactose-galectin association. Cancer Research, 2016, 76, 5112-5112.	0.9	1
43	Abstract 3844: A novel liposomal Clodronate depletes tumor-associated macrophages in primary and metastatic melanoma: anti-angiogenic and anti-tumor effects. , 2016, , .		0
44	Anti-Tumor Effects of Bak-Proteoliposomes against Glioblastoma. Molecules, 2015, 20, 15893-15909.	3.8	7
45	New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against <i>ALK</i> . Oncotarget, 2015, 6, 28774-28789.	1.8	18
46	Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials, 2015, 68, 89-99.	11.4	36
47	Tumor vascular targeted liposomal-bortezomib minimizes side effects and increases therapeutic activity in human neuroblastoma. Journal of Controlled Release, 2015, 211, 44-52.	9.9	49
48	Clinical impact of the NKp30/B7-H6 axis in high-risk neuroblastoma patients. Science Translational Medicine, 2015, 7, 283ra55.	12.4	120
49	The Neuronal Pentraxin-2 Pathway Is an Unrecognized Target in Human Neuroblastoma, Which Also Offers Prognostic Value in Patients. Cancer Research, 2015, 75, 4265-4271.	0.9	20
50	Quiescent Hepatic Stellate Cells Functionally Contribute to the Hepatic Innate Immune Response via TLR3. PLoS ONE, 2014, 9, e83391.	2.5	26
51	ALK-Dependent Control of Hypoxia-Inducible Factors Mediates Tumor Growth and Metastasis. Cancer Research, 2014, 74, 6094-6106.	0.9	45
52	sTRAIL coupled to liposomes improves its pharmacokinetic profile and overcomes neuroblastoma tumour resistance in combination with Bortezomib. Journal of Controlled Release, 2014, 192, 157-166.	9.9	26
53	Abstract 1778: Characterization and anti-tumor functionality of a neuroblastoma-specific peptide, either free or conjugated to nanocarriers. , 2014, , .		0
54	Abstract 2622: New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs againstALK. , 2014, , .		0

#	Article	IF	CITATIONS
55	Abstract 1453: MicroRNA replacement and RNAi-mediated silencing of ALK as combined targeted therapies for neuroblastoma. Cancer Research, 2014, 74, 1453-1453.	0.9	1
56	Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings. Journal of Controlled Release, 2013, 170, 233-241.	9.9	41
57	Enhanced anti-tumor and anti-angiogenic efficacy of a novel liposomal fenretinide on human neuroblastoma. Journal of Controlled Release, 2013, 170, 445-451.	9.9	41
58	Nanocarrier-Mediated Targeting of Tumor and Tumor Vascular Cells Improves Uptake and Penetration of Drugs into Neuroblastoma. Frontiers in Oncology, 2013, 3, 190.	2.8	21
59	Neuroblastoma tumorigenesis is regulated through the Nm23-H1/h-Prune C-terminal interaction. Scientific Reports, 2013, 3, 1351.	3.3	34
60	Abstract 5609: Bortezomib enhanced cytotoxic effects of novel sTRAIL-targeted nanocarriers against neuroectodermal tumors Cancer Research, 2013, 73, 5609-5609.	0.9	24
61	Abstract 5620: Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings , 2013, , .		0
62	Chromogranin A binds to αvβ6-integrin and promotes wound healing in mice. Cellular and Molecular Life Sciences, 2012, 69, 2791-2803.	5.4	17
63	Targeted Drug Delivery and Penetration Into Solid Tumors. Medicinal Research Reviews, 2012, 32, 1078-1091.	10.5	108
64	The use of the orthotopic model to validate antivascular therapies for cancer. International Journal of Developmental Biology, 2011, 55, 547-555.	0.6	43
65	Potent and sustained inhibition of HIF-1α and downstream genes by a polyethyleneglycol-SN38 conjugate, EZN-2208, results in anti-angiogenic effects. Angiogenesis, 2011, 14, 245-53.	7.2	57
66	Neuroblastoma-targeted Nanoparticles Entrapping siRNA Specifically Knockdown ALK. Molecular Therapy, 2011, 19, 1131-1140.	8.2	56
67	Selective Therapeutic Targeting of the Anaplastic Lymphoma Kinase With Liposomal siRNA Induces Apoptosis and Inhibits Angiogenesis in Neuroblastoma. Molecular Therapy, 2011, 19, 2201-2212.	8.2	57
68	Abstract 5144: Oligonucleotide-based inhibition of the pro-angiogenic activity of Hepatoma-derived growth factor related protein 3 in neuroblastoma. , 2011, , .		3
69	Liposomal Chemotherapy. , 2011, , 2059-2063.		2
70	Abstract 3625: Novel phage-display derived peptides for tumor- and vasculature-targeted therapies in neuroblastoma. , 2011, , .		0
71	Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma. Journal of Controlled Release, 2010, 145, 66-73.	9.9	78
72	PHOX2B-Mediated Regulation of ALK Expression: In Vitro Identification of a Functional Relationship between Two Genes Involved in Neuroblastoma. PLoS ONE, 2010, 5, e13108.	2.5	40

#	Article	IF	CITATIONS
73	Critical Role of Flanking Residues in NGR-to-isoDGR Transition and CD13/Integrin Receptor Switching. Journal of Biological Chemistry, 2010, 285, 9114-9123.	3.4	77
74	Tumor Regression and Curability of Preclinical Neuroblastoma Models by PEGylated SN38 (EZN-2208), a Novel Topoisomerase I Inhibitor. Clinical Cancer Research, 2010, 16, 4809-4821.	7.0	74
75	Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells. Molecular Cancer, 2010, 9, 137.	19.2	44
76	Therapeutic Targeting of TLR9 Inhibits Cell Growth and Induces Apoptosis in Neuroblastoma. Cancer Research, 2010, 70, 9816-9826.	0.9	65
77	Chapter 12 Liposome-Mediated Therapy of Neuroblastoma. Methods in Enzymology, 2009, 465, 225-249.	1.0	13
78	The Combined Therapeutic Effects of Bortezomib and Fenretinide on Neuroblastoma Cells Involve Endoplasmic Reticulum Stress Response. Clinical Cancer Research, 2009, 15, 1199-1209.	7.0	39
79	Anti-IL-10R antibody improves the therapeutic efficacy of targeted liposomal oligonucleotides. Journal of Controlled Release, 2009, 138, 122-127.	9.9	13
80	An alternative in vivo system for testing angiogenic potential of human neuroblastoma cells. Cancer Letters, 2009, 277, 199-204.	7.2	19
81	Macrophages Are Alternatively Activated in Patients with Endometriosis and Required for Growth and Vascularization of Lesions in a Mouse Model of Disease. American Journal of Pathology, 2009, 175, 547-556.	3.8	319
82	Recent Advances in Targeted Anti-Vasculature Therapy: The Neuroblastoma Model. Current Drug Targets, 2009, 10, 1021-1027.	2.1	14
83	Abstract A130: Effects of a novel liposomal formulation of fenretinide on human neuroblastoma cell growth, apoptosis and angiogenesis. , 2009, , .		Ο
84	Abstract C215: EZNâ€⊋208, a novel pegylated SNâ€38 drug conjugate, markedly inhibits tumor growth and metastatic spreading in preclinical models of human neuroblastoma. , 2009, , .		0
85	Abstract B202: A new curcumin analogue compound endowed with strong antitumor activity against neuroectodermaâ€derived cancers. , 2009, , .		Ο
86	Increase of therapeutic effects by treating melanoma with targeted combinations of c-myc antisense and doxorubicin. Journal of Controlled Release, 2008, 126, 85-94.	9.9	26
87	Enhanced Antitumor Efficacy of Clinical-Grade Vasculature-Targeted Liposomal Doxorubicin. Clinical Cancer Research, 2008, 14, 7320-7329.	7.0	82
88	Drug Delivery Systems: Application of Liposomal Anti-Tumor Agents to Neuroectodermal Cancer Treatment. Tumori, 2008, 94, 246-253.	1.1	19
89	Angiogenesis in Malignant and Non-Malignant Pediatric Tumors. , 2008, , 475-486.		1
90	Combined Therapeutic Effects of Vinblastine and Rapamycin on Human Neuroblastoma Growth, Apoptosis, and Angiogenesis. Clinical Cancer Research, 2007, 13, 3977-3988.	7.0	77

#	Article	IF	CITATIONS
91	Ligand-Targeted Liposomal Therapies of Neuroblastoma. Current Medicinal Chemistry, 2007, 14, 3070-3078.	2.4	28
92	Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Molecular Cancer, 2007, 6, 8.	19.2	106
93	An interferon-sensitive response element is involved in constitutive caspase-8 gene expression in neuroblastoma cells. International Journal of Cancer, 2007, 120, 39-47.	5.1	21
94	Immunogenic and structural properties of the Asn-Gly-Arg (NGR) tumor neovasculature-homing motif. Molecular Immunology, 2006, 43, 1509-1518.	2.2	49
95	Proteomic analysis of anti-angiogenic effects by a combined treatment with vinblastine and rapamycin in an endothelial cell line. Proteomics, 2006, 6, 4420-4431.	2.2	20
96	Targeting Liposomal Chemotherapy via Both Tumor Cell–Specific and Tumor Vasculature–Specific Ligands Potentiates Therapeutic Efficacy. Cancer Research, 2006, 66, 10073-10082.	0.9	215
97	Effect of Bortezomib on Human Neuroblastoma Cell Growth, Apoptosis, and Angiogenesis. Journal of the National Cancer Institute, 2006, 98, 1142-1157.	6.3	125
98	Synergistic inhibition of human neuroblastoma-related angiogenesis by vinblastine and rapamycin. Oncogene, 2005, 24, 6785-6795.	5.9	63
99	Spot overlapping in two-dimensional maps: A serious problem ignored for much too long. Proteomics, 2005, 5, 2385-2395.	2.2	130
100	Antiangiogenic strategies in neuroblastoma. Cancer Treatment Reviews, 2005, 31, 27-34.	7.7	43
101	Neuroblastoma targeting by c-myb-selective antisense oligonucleotides entrapped in anti-GD2 immunoliposome: immune cell-mediated anti-tumor activities. Cancer Letters, 2005, 228, 181-186.	7.2	29
102	Chemopreventive N-(4-hydroxyphenyl)retinamide (fenretinide) targets deregulated NF-ÂB and Mat1A genes in the early stages of rat liver carcinogenesis. Carcinogenesis, 2004, 26, 417-427.	2.8	28
103	Immune Cell-Mediated Antitumor Activities of GD2-Targeted Liposomal c-myb Antisense Oligonucleotides Containing CpG Motifs. Journal of the National Cancer Institute, 2004, 96, 1171-1180.	6.3	61
104	Expression of the caspase-8 gene in neuroblastoma cells is regulated through an essential interferon-sensitive response element (ISRE). Cell Death and Differentiation, 2004, 11, 131-134.	11.2	46
105	Targeted Delivery of Oncogene-Selective Antisense Oligonucleotides in Neuroectodermal Tumors: Therapeutic Implications. Annals of the New York Academy of Sciences, 2004, 1028, 90-103.	3.8	13
106	Tumor Vascular Targeting with Tumor Necrosis Factor and Chemotherapeutic Drugs. Annals of the New York Academy of Sciences, 2004, 1028, 104-112.	3.8	78
107	Angiogenesis in Neuroblastoma. Annals of the New York Academy of Sciences, 2004, 1028, 133-142.	3.8	62
108	Caspase-8 Gene Expression in Neuroblastoma. Annals of the New York Academy of Sciences, 2004, 1028, 157-167.	3.8	33

#	Article	IF	CITATIONS
109	Proteomic analysis of an orthotopic neuroblastoma xenograft animal model*1. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 808, 279-286.	2.3	14
110	Study of proteomic changes associated with healthy and tumoral murine samples in neuroblastoma by principal component analysis and classification methods. Clinica Chimica Acta, 2004, 345, 55-67.	1.1	39
111	In vitro andin vivo antitumor activity of liposomal fenretinide targeted to human neuroblastoma. International Journal of Cancer, 2003, 104, 559-567.	5.1	41
112	Mechanisms of free-radical induction in relation to fenretinide-induced apoptosis of neuroblastoma. Journal of Cellular Biochemistry, 2003, 89, 698-708.	2.6	33
113	Biological and clinical role of p73 in neuroblastoma. Cancer Letters, 2003, 197, 111-117.	7.2	19
114	Immunoliposomal fenretinide: a novel antitumoral drug for human neuroblastoma. Cancer Letters, 2003, 197, 151-155.	7.2	36
115	Development of Fab′ fragments of anti-GD2 immunoliposomes entrapping doxorubicin for experimental therapy of human neuroblastoma. Cancer Letters, 2003, 197, 199-204.	7.2	41
116	Anti-GD2 monoclonal antibody immunotherapy: a promising strategy in the prevention of neuroblastoma relapse. Cancer Letters, 2003, 197, 205-209.	7.2	37
117	Fenretinide as an anti-angiogenic agent in neuroblastoma. Cancer Letters, 2003, 197, 181-184.	7.2	20
118	Targeted delivery system for antisense oligonucleotides: a novel experimental strategy for neuroblastoma treatment. Cancer Letters, 2003, 197, 231-235.	7.2	47
119	Doxorubicin-loaded Fab' fragments of anti-disialoganglioside immunoliposomes selectively inhibit the growth and dissemination of human neuroblastoma in nude mice. Cancer Research, 2003, 63, 86-92.	0.9	122
120	Phase I trial and pharmacokinetics of fenretinide in children with neuroblastoma. Clinical Cancer Research, 2003, 9, 2032-9.	7.0	151
121	Targeted liposomal c-myc antisense oligodeoxynucleotides induce apoptosis and inhibit tumor growth and metastases in human melanoma models. Clinical Cancer Research, 2003, 9, 4595-605.	7.0	53
122	Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Research, 2003, 63, 7400-9.	0.9	242
123	Angiogenesis and anti-angiogenesis in neuroblastoma. European Journal of Cancer, 2002, 38, 750-757.	2.8	49
124	In vivo angiogenic activity of neuroblastoma correlates withMYCN oncogene overexpression. International Journal of Cancer, 2002, 102, 351-354.	5.1	52
125	Role of methylation in the control of ΔNp73 expression in neuroblastoma. Cell Death and Differentiation, 2002, 9, 343-345.	11.2	36
126	Expression of ΔNp73 is a molecular marker for adverse outcome in neuroblastoma patients. Cell Death and Differentiation, 2002, 9, 246-251.	11.2	183

#	Article	IF	CITATIONS
127	Expression and methylation of CASP8 in neuroblastoma: Identification of a promoter region. Nature Medicine, 2002, 8, 1333-1335.	30.7	76
128	Angiogenesis extent and expression of matrix metalloproteinase-2 and -9 correlate with progression in human neuroblastoma. Life Sciences, 2001, 68, 1161-1168.	4.3	58
129	Inhibition of neuroblastoma-induced angiogenesis by fenretinide. International Journal of Cancer, 2001, 94, 314-321.	5.1	63
130	Targeted delivery of antisense oligonucleotides in cancer. Journal of Controlled Release, 2001, 74, 69-75.	9.9	42
131	Delivery of c-myb Antisense Oligodeoxynucleotides to Human Neuroblastoma Cells Via Disialoganglioside GD2-Targeted Immunoliposomes: Antitumor Effects. Journal of the National Cancer Institute, 2000, 92, 253-261.	6.3	98
132	Autocrine Regulation of Volume-sensitive Anion Channels in Airway Epithelial Cells by Adenosine. Journal of Biological Chemistry, 1999, 274, 11701-11707.	3.4	41
133	N-(4-hydroxyphenyl) retinamide is cytotoxic to melanoma cellsInVitro through induction of programmed cell death. , 1999, 81, 262-267.		28
134	GD2-mediated melanoma cell targeting and cytotoxicity of liposome-entrapped fenretinide. , 1999, 81, 268-274.		57
135	N-(4-hydroxyphenyl)retinamide inhibitscystogenesis by polycystic epithelial cell lines in vitro. Life Sciences, 1999, 64, PL259-PL265.	4.3	6
136	Anti Gd2-Immunoliposome-Mediated Targeting of [125I] Metaiodobenzylguanidine to Neuroblastoma and Melanoma Cells in Vitro. Journal of Liposome Research, 1999, 9, 367-385.	3.3	5
137	Human neuroblastoma cells produce extracellular matrix-degrading enzymes, induce endothelial cell proliferation and are angiogenicin vivo. , 1998, 77, 449-454.		54
138	Apoptosis of Human Neuroblastoma Cells Induced by Liposome-Encapsulated Fenretinide. Journal of Liposome Research, 1998, 8, 401-423.	3.3	13
139	Induction of differentiation and apoptosis by interferon-γ in human neuroblastoma cells in vitro as a dual and alternative early biological response. Cell Death and Differentiation, 1997, 4, 150-158.	11.2	10
140	Integrin up-regulation as marker of neuroblastoma cell differentiation: correlation with neurite extension. Cell Death and Differentiation, 1997, 4, 713-724.	11.2	18
141	Bioavailability of antisense oligonucleotides in neuroblastoma cells: comparison of efficacy among different types of molecules. Journal of Neuro-Oncology, 1997, 31, 171-180.	2.9	6
142	Induction of apoptosis in human neuroblastoma cells by abrogation of integrin-mediated cell adhesion. International Journal of Cancer, 1997, 70, 688-698.	5.1	68
143	Increase of metaiodobenzylguanidine uptake and intracellular half-life during differentiation of human neuroblastoma cells. , 1996, 67, 95-100.		22
144	Induction of 2,5 oas gene expression and activity is not sufficient for IFN-Î ³ -induced neuroblastoma cell differentiation. International Journal of Cancer, 1995, 62, 223-229.	5.1	10

#	Article	IF	CITATIONS
145	Synergistic Differentiation-Promoting Activity of Interferon and Tumor Necrosis Factor-Â: Role of Receptor Regulation on Human Neuroblasts. Journal of the National Cancer Institute, 1994, 86, 1694-1701.	6.3	23
146	Cloning and sequencing of isoform-specific regions of human Ca2+ -independent protein kinase C (PKC)-encoding genes. Gene, 1994, 141, 307-308.	2.2	2
147	Uncoordinate induction and differential regulation of hla class-I and class-II expression by γ-interferon in differentiating human neuroblastoma cells. International Journal of Cancer, 1993, 55, 817-823.	5.1	35
148	Interferon-?-induced differentiation of human neuroblastoma cells increases cellular uptake and halflife of metaiodobenzylguanidine. Cytotechnology, 1993, 11, S140-S143.	1.6	2
149	Modulation of α1β1, α2β1, and α3β1integrin heterodimers during human neuroblastoma cell differentiation. FEBS Letters, 1993, 332, 263-267.	2.8	27
150	Protein kinase C isoenzymes in human neuroblasts involvement of PKCε in cell differentiation. FEBS Letters, 1993, 322, 120-124.	2.8	37
151	Î ³ -Interferon and retinoic acid synergize in inhibiting the growth of human neuroblastoma cells in nude mice. Cancer Letters, 1992, 61, 215-220.	7.2	12
152	Stimulation of receptor-coupled phospholipase A2by interferon-Î ³ . FEBS Letters, 1992, 310, 17-21.	2.8	16
153	A combined evaluation of biochemical and morphological changes during human neuroblastoma cell differentiation. Cellular and Molecular Neurobiology, 1992, 12, 225-240.	3.3	23
154	?-interferon, retinoic acid, and cytosine arabinoside induce neuroblastoma differentiation by different mechanisms. Cellular and Molecular Neurobiology, 1991, 11, 397-413.	3.3	12
155	Morphological and biochemical modifications during neuroblastoma cell differentiation. Cytotechnology, 1991, 5, 178-179.	1.6	0
156	Retinoic Acid Rapidly Decreases Phosphatidylinositol Turnover During Neuroblastoma Cell Differentiation. Journal of Neurochemistry, 1990, 54, 540-546.	3.9	22
157	Different regulation of mid-size neurofilament and N-myc mRNA expression during neuroblastoma cell differentiation induced by retinoic acid. Cellular and Molecular Neurobiology, 1990, 10, 459-470.	3.3	12
158	Differential changes in lipid metabolism ofmyeloid and lymphoid cell lines induced by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA). FEBS Letters, 1990, 276, 25-28.	2.8	0
159	Retinoic acid inhibits phosphatidylinositol turnover only in RA-sensitive while not in RA-resistant human neuroblastoma cells. Biochemical and Biophysical Research Communications, 1989, 161, 284-289.	2.1	9
160	Phosphatidylinositol turnover is not a general regulator of neuroblastoma cell differentiation: comparison between two differentiating agents, retinoic acid and γ-interferon. FEBS Letters, 1989, 243, 285-288.	2.8	7
161	Morphologic and phenotypic changes of human neuroblastoma cells in culture induced by cytosine arabinoside. Experimental Cell Research, 1989, 181, 226-237.	2.6	15
162	Effects of ?-interferon on the growth, morphology, and membrane and cytoskeletal proteins expression of LAN-1 cells. Experimental Cell Research, 1989, 185, 327-341.	2.6	23

#	Article	IF	CITATIONS
163	Purification to homogeneity and biochemical characterization of two suppressor factors from human malignant T-cells. Biochemical and Biophysical Research Communications, 1988, 150, 702-710.	2.1	4
164	Immune evaluation of 50 children with neuroblastoma at onset. Medical and Pediatric Oncology, 1982, 10, 321-330.	1.0	7